Seasonal streamflow forecasts fostering hydro power cascade operation applying the adaptive policy search framework

Author(s):  
Christoph Libisch-Lehner ◽  
Harald Kling ◽  
Martin Fuchs ◽  
Hans-Peter Nachtnebel

<p>Hydro power assets contribute a valuable share of carbon-free energy generation worldwide. Large reservoirs are able to store energy and, combined with pump-storage capacities, they will play an important role in the future’s energy mix. In the future, the stronger integration of volatile energy sources, like solar and wind energy demands the flexibility of hydro power plants. In general, the operation of hydro power plants is a multi-stakeholder and multi-objective dynamic problem related to critical infrastructure. This requires flexible and robust reservoir operation policies, defined as closed-loop release functions where the system state is the input and turbine flows are the response of the function. Recently, Evolutionary-Multi-Objective-Direct-Policy-Search (EMODPS) yielded promising control policies for water resources systems. EMODPS is a kind of machine learning approach that relies on long records, or stochastic streamflow replicates capturing a wide range of possible conditions. A stochastic streamflow generator should actually cover all possible conditions related to the state-action-space and inflates the optimization process. Furthermore, the search procedure can implicitly identify the "most representative" states of the system and tends to approximate a better solution for these states. States that are very rarely explored but can be very important for a reliable operation have little effect on the optimized policy. In addition, artificial neuronal networks (ANN) derived from EMODPS suffer under the curse of instable sections . This is because ANN's are good at interpolating, but bad at extrapolating actions from unobserved states in the training sequence. Thus, we extend the well-known EMODPS framework by an re-optimizing approach utilizing seasonal streamflow predictions. Periodically, the reservoir policies are re-optimized based on an ensemble of streamflow predictions and the actual reservoir water levels. This adaptive policy search (APS) approach is applied to a three reservoirs cascade under Mediterranean climate, where the energy market will play an important role in the future. First results show that the hydropower operation can be improved: energy generation can slightly be increased at clearly lower cost of flood risk compared to static robust policies.</p>

2021 ◽  
Vol 927 (1) ◽  
pp. 012002
Author(s):  
H Sudibyo ◽  
G Pikra ◽  
A Fudholi

Abstract The islands of Papua and Maluku are eastern Indonesia which consists of remote islands and villages. The Papua Islands consist of 3,749 islands divided into two provinces, namely Papua and West Papua, while the Maluku Islands are 1,735 islands into two provinces of Maluku and North Maluku, the number of inhabited islands in Papua and Maluku around 230 islands and around 100 newly electrified islands. The electrification ratio for Papua is 47.69%, West Papua is 89.94%, Maluku is 87.02% and North Maluku is 88.68%. The electrification ratio is still below the national average. Maluku Islands and Papua Indonesia has abundant renewable energy natural resources, namely hydro potential. The total hydro energy potential of Papua and Maluku is 808 MW. To overcome this shortage of electricity, it is necessary to develop a renewable energy generation system according to the potential of the area, namely hydro power. Energy generation technology that is environmentally friendly, efficient, effective, and reliable can be a solution for electrification in Papua and Maluku. Hydro power plants using vortex turbines, picohydro turbines and axial turbines for permanent magnet generators can be a solution to electrify areas or villages remote in Papua and Maluku.


Author(s):  
Mulyono Mulyono ◽  
Hanny J Berchmans

In common mini hydro power plants in Indonesia, the control of water levels in intake, sand-trap and head pond is carried out manually. This conventional manual control system may cause damages of waterway and all its components due to overflow or transient flow of water during load shedding or black out of electricity grid. The damages eventually may increase cost of maintenance and increase the risk of waterway collapse or excessive water hammer in penstock pipe. This type of collapses often happen in many mini hydro power plants in Indonesia. The risk of damages can be reduced by installing water level control and monitoring system in all key water way components such as in intake, sand-trap and head pond. Some other mini hydro power plants have installed water level control and monitoring system. But the price of such control system is still very expensive and high operation and maintenance cost. Thus, this thesis work designs and simulates simple and inexpensive the water level control and monitoring system for a mini hydro power plant. In this thesis work, the design and simulation of the water level control and monitoring system are carried out by a simulated three water tanks where the water levels in the tanks are monitored and controlled by using ultrasonic level sensors and motorized valves respectively. A simple and inexpensive Arduino based water level control and monitoring system is successfully designed to fulfil the requirement of quick or fast respond for water level control in the simulated model.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3201
Author(s):  
Henry Bory ◽  
Jose L. Martin ◽  
Iñigo Martinez de Alegria ◽  
Luis Vazquez

Micro-hydro power plants (μHPPs) are a major energy source in grid-isolated zones because they do not require reservoirs and dams to be built. μHPPs operate in a standalone mode, but a continuously varying load generates voltage unbalances and frequency fluctuations which can cause long-term damage to plant components. One method of frequency regulation is the use of alternating current-alternating current (AC-AC) converters as an electronic load controller (ELC). The disadvantage of AC-AC converters is reactive power consumption with the associated decrease in both the power factor and the capacity of the alternator to deliver current. To avoid this disadvantage, we proposed two rectifier topologies combined with symmetrical switching. However, the performance of the frequency regulation loop with each topology remains unknown. Therefore, the objective of this work was to evaluate the performance of the frequency regulation loop when each topology, with a symmetrical switching form, was inserted. A MATLAB® model was implemented to simulate the frequency loop. The results from a μHPP case study in a small Cuban rural community called ‘Los Gallegos’ showed that the performance of the frequency regulation loop using the proposed topologies satisfied the standard frequency regulation and increased both the power factor and current delivery capabilities of the alternator.


2018 ◽  
Vol 73 ◽  
pp. 01017
Author(s):  
Ignatius Sriyana

Land degradation on the upstream of watershed will affect hydrology condition in a way that it will disrupt the sustainability of its existing micro hydro. The purpose of this study is to evaluate micro hydro power plant in central Java toward sustainability against hydrology condition of watershed. This study is using River Regime Coefficient (RRC) approach where hydrology of watershed with coefficient value less than 50 is classified as non-critical, between 50 and 120 is moderate and more than 120 is critical. Result of the study that was done on 33 micro hydro power plants scattered on 9 watersheds is showing that there are 2 power plants on 2 watersheds have hydrology condition in non-critical status (9.09%), 1 power plant on 1 watershed is in between critical and non-critical status (3.03%), 21 power plants on 3 watersheds are in between critical and moderate status (63.64%), 8 power plants on 6 watersheds are in critical status (21.21%) and 1 power plant on 1 watershed is in between moderate and critical status (3.03%).


Sign in / Sign up

Export Citation Format

Share Document