Preliminary investigation of the possibility of GIC development in Greece

Author(s):  
Adamantia Zoe Boutsi ◽  
Georgios Balasis ◽  
Ioannis A. Daglis

<p>Geomagnetically Induced Currents (GIC) constitute an integral part of the space weather research and a subject of ever-growing attention for countries located in the low and middle latitudes. A series of recent studies highlights the importance of considering GIC risks for the Mediterranean region. The HellENIc GeoMagnetic Array (ENIGMA) is a network of 4 ground-based magnetometer stations in the areas of Thessaly, Central Greece, Peloponnese and Crete in Greece that provides geomagnetic measurements for the study of pulsations, resulting from the solar wind - magnetosphere coupling. ENIGMA magnetometer array enables effective remote sensing of geospace dynamics and the study of space weather effects on the ground (i.e. GIC). ENIGMA contributes data to SuperMAG, a worldwide collaboration of organizations and national agencies that currently operate approximately 300 ground-based magnetometers. In this presentation, we exploit ENIGMA data in order to study the spatio-temporal variations of the geomagnetic field that emanate during active geospace conditions. Moreover, we investigate the possibility that these variations produce hazardous currents and provide an estimation of their intensity, focusing on the most intense magnetic storms of the present solar cycle.</p>

2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2019 ◽  
Vol 9 ◽  
pp. A18 ◽  
Author(s):  
Vladimir Belakhovsky ◽  
Vyacheslav Pilipenko ◽  
Mark Engebretson ◽  
Yaroslav Sakharov ◽  
Vasily Selivanov

Geomagnetically induced currents (GICs) represent a significant challenge for society on a stable electricity supply. Space weather activates global electromagnetic and plasma processes in the near-Earth environment, however, the highest risk of GICs is related not directly to those processes with enormous energy yield, but too much weaker, but fast, processes. Here we consider several typical examples of such fast processes and their impact on power transmission lines in the Kola Peninsula and in Karelia: interplanetary shocks; traveling convection vortices; impulses embedded in substorms; and irregular Pi3 pulsations. Geomagnetic field variability is examined using data from the IMAGE (International Monitor for Auroral Geomagnetic Effects) magnetometer array. We have confirmed that during the considered impulsive events the ionospheric currents fluctuate in both the East-West and North-South directions, and they do induce GIC in latitudinally extended electric power line. It is important to reveal the fine structure of fast geomagnetic variations during storms and substorms not only for a practical point of view but also for a fundamental scientific view.


2019 ◽  
Vol 5 (1) ◽  
pp. 48-58
Author(s):  
Андрей Воробьев ◽  
Andrey Vorobev ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Ярослав Сахаров ◽  
...  

Using observations from the IMAGE magnetic observatories and the station for recording geomagnetically induced currents (GIC) in the electric transmission line in 2015, we examine relationships between geomagnetic field and GIC variations. The GIC intensity is highly correlated (R>0.7) with the field variability |dB/dt| and closely correlated with variations in the time derivatives of X and Y components. Daily variations in the mean geomagnetic field variability |dB/dt| and GIC intensity have a wide night maximum, associated with the electrojet, and a wide morning maximum, presumably caused by intense Pc5–Pi3 geomagnetic pulsations. We have constructed a regression linear model to estimate GIC from the time derivative of the geomagnetic field and AE index. Statistical distributions of the probability density of the AE index, geomagnetic field derivative, and GIC correspond to the log-normal law. The constructed distributions are used to evaluate the probabilities of extreme values of GIC and |dB/dt|.


2019 ◽  
Vol 115 (1/2) ◽  
Author(s):  
Emmanuel Nahayo ◽  
Pieter B. Kotzé ◽  
Pierre J. Cilliers ◽  
Stefan Lotz

Geomagnetic storms are space weather events that result in a temporary disturbance of the earth’s magnetosphere caused by a solar wind that interacts with the earth’s magnetic field. We examined more closely how some southern African magnetic observatories responded to the Saint Patrick’s Day storm using local K-indices. We show how this network of observatories may be utilised to model induced electric field, which is useful for the monitoring of geomagnetically induced anomalous currents capable of damaging power distribution infrastructure. We show an example of the correlation between a modelled induced electric field and measured geomagnetically induced currents in southern Africa. The data show that there are differences between global and local indices, which vary with the phases of the storm. We show the latitude dependence of geomagnetic activity and demonstrate that the direction of the variation is different for the X and Y components. Significance: • The importance of ground-based data in space weather studies is demonstrated. • We show how SANSA’s geomagnetic network may be utilised to model induced electric field, which is useful for the monitoring of geomagnetically induced anomalous currents capable of damaging power distribution infrastructure.


2005 ◽  
Vol 23 (9) ◽  
pp. 3089-3093 ◽  
Author(s):  
P. Hejda ◽  
J. Bochníček

Abstract. Whereas geomagnetically induced currents are a source of problems for technological systems mainly at high geomagnetic latitudes, strong geomagnetic disturbances can have quite strong effects even at mid-latitudes. This paper deals with the analysis of the pipe-to-soil (P/S) voltage measured in oil pipelines in the Czech Republic during the Halloween magnetic storms in 2003. It is shown that the simplest - plane wave and uniform Earth-model of the electric field corresponds well to the measured P/S voltage. Although the largest amplitudes of the geomagnetic field were reached on the onset of the geomagnetic storm, large voltages were also induced in the main and recovery phases due to Pc5 oscillations.


2019 ◽  
Vol 5 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Андрей Воробьев ◽  
Andrey Vorobev ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Ярослав Сахаров ◽  
...  

Using observations from the IMAGE magnetic observatories and the station for recording geomagnetically induced currents (GIC) in the electric transmission line in 2015, we examine relationships between geomagnetic field and GIC variations. The GIC intensity is highly correlated (R>0.7) with the field variability |dB/dt| and closely correlated with variations in the time derivatives of X and Y components. Daily variations in the mean geomagnetic field variability |dB/dt| and GIC intensity have a wide night maximum, associated with the electrojet, and a wide morning maximum, presumably caused by intense Pc5–Pi3 geomagnetic pulsations. We have constructed a regression linear model to estimate GIC from the time derivative of the geomagnetic field and AE index. Statistical distributions of the probability density of the AE index, geomagnetic field derivative, and GIC correspond to the log-normal law. The constructed distributions are used to evaluate the probabilities of extreme values of GIC and |dB/dt|.


Sign in / Sign up

Export Citation Format

Share Document