Multistage adaptive spectral subtraction of seismic signals

Author(s):  
Yousef Rajaeitabrizi ◽  
Robabeh Salehiozoumchelouei ◽  
Luca D'Auria ◽  
José Luis Sánchez de la Rosa

<p>The detection of microearthquakes is an important task in various seismological applications as volcano seismology, induced seismicity, and mining safety. In this work we have developed a novel technique in order to improve the quality and efficiency of STA/LTA based detection of microearthquakes. This technique consists of different stages of filtering employing an adaptive spectral subtraction method, which allows greatly improving the signal/noise ratio.</p><p>The implemented technique consists in a preliminary band-pass filtering of the signal followed by different stages of an adaptive spectral subtraction. The spectral subtraction technique is a non-linear filtering which allows taking into account the actual noise spectrum shape. It allows achieving a good filtering even in cases where the signal and noise spectrum overlaps. In order to take into account of the temporal variation in the background noise spectrum, we designed an adaptive technique. We first divide the incoming signals into short temporal windows. Each window is classified as “noise only” or “meaningful signal” (which can be either a microearthquake or any other relevant transient signal) using different features as the signal energy and the zero-crossing rate. Windows classified as “noise only” are continuously accumulated in a dynamic buffer which allows the average noise spectrum to be estimated and updated in an adaptive manner. This technique can be applied on subsequent stages to further improve the signal/noise ratio. This technique has been implemented in Python for the automatic detection of the microearthquakes on both off-line and near-real time data.</p><p>In order to check the efficiency of the results, we compared the results of an STA/LTA based automatic detection on the initial band-pass filtered signal and on the spectral subtracted signals after different stages of filtering. A notable improvement of the quality of the detection process is observed when repeated spectral subtraction stages are applied. </p><p>We applied this procedure to seismic data recorded by Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN), on Tenerife (Canary Islands), comparing results from the proposed detection algorithm with standard approaches as well as with manual detections. We present an extensive statistical analysis of the results, determining the percentage of correct detections, novel detections, false positives and false negatives after each stage of filtering. First results have shown that this technique is also able to detect automatically microearthquakes which went undetected after a manual analysis.</p>

Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


2012 ◽  
Vol 71 (5) ◽  
pp. 445-453
Author(s):  
M. D. Rasnikov ◽  
I. T. Rozhkov

Author(s):  
Ryan Xiao ◽  
William Wang ◽  
Ang Li ◽  
Shengqiu Xu ◽  
Binghai Liu

Abstract With the development of semiconductor technology and the increment quantity of metal layers in past few years, backside EFA (Electrical Failure Analysis) technology has become the dominant method. In this paper, abnormally high Signal Noise Ratio (SNR) signal captured by Electro-Optical Probing (EOP)/Laser Voltage Probing (LVP) from backside is shown and the cause of these phenomena are studied. Based on the real case collection, two kinds of failure mode are summarized, and simulated experiments are performed. The results indicate that when a current path from power to ground is formed, the high SNR signal can be captured at the transistor which was on this current path. It is helpful of this consequence for FA to identify the failure mode by high SNR signal.


1974 ◽  
Vol 19 (1) ◽  
pp. 74-85 ◽  
Author(s):  
T. Fujimori ◽  
T. Miyazu ◽  
K. Ishikawa

2008 ◽  
Vol 08 (02) ◽  
pp. L229-L235 ◽  
Author(s):  
LEI ZHANG ◽  
JUN HE ◽  
AIGUO SONG

Recently, it was reported that some saturation nonlinearities could effectively act as noise-aided signal-noise-ratio amplifiers. In the letter we consider the signal detection performance of saturation nonlinearities driven by a sinusoidal signal buried in Gaussian white noise. It is showed that the signal detection statistics still undergo a nonmonotonic evolution as noise is raised. We also particularly show that an improvement of the SNR in terms of the first harmonic does not imply the possibility to improve the signal detection performance through stochastic resonance. The study might also complement other reports about stochastic resonance in saturation nonlinearities.


2018 ◽  
Vol 115 (10) ◽  
pp. 2034-2043 ◽  
Author(s):  
Seongjin Lim ◽  
Hyeono Nam ◽  
Jessie S. Jeon

2017 ◽  
Author(s):  
Imke Hans ◽  
Martin Burgdorf ◽  
Viju O. John ◽  
Jonathan Mittaz ◽  
Stefan A. Buehler

Abstract. The microwave humidity sounders Special Sensor Microwave Water Vapour Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space view (DSV) of the instrument and the Noise Equivalent Differential Temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan Deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan Deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT < K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as first step for constructing long time series. Our method for count noise estimation, that has been used in this study, will be used in the data processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDR) that are currently produced in the project Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO).


2014 ◽  
Vol 36 (2) ◽  
pp. 186-191
Author(s):  
V. I. Roman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document