Impact of ECMWF ERA-Interim and ERA5 reanalysis on the simulated tracer transport and polar ozone loss using a chemical transport model TOMCAT/SLIMCAT 

Author(s):  
Wuhu Feng ◽  
Martyn Chipperfield ◽  
Sandip Dhmose ◽  
Florence Goutail ◽  
Michelle Santee ◽  
...  

<div> <p>Three-dimensional chemical transport models (CTMs) have been widely used in a wide variety of scientific studies (e.g., to obtain a better understanding of tracer transport and to study the dynamical and chemical processes which control polar ozone losses etc). However, there are still some uncertainties in the model simulations and indeed in our understanding. For example, the accuracy of ozone simulations largely depends on the transport, chemistry and treatment of PSCs in the model as well as the forcing files. </p> <p>Here we have used a  CTM model TOMCAT/SLIMCAT with a detailed description of stratospheric and tropospheric chemistry forced by differnt wind fields (ECMWF ERA-Interim and <span>ERA5</span> reanalysis datasets) to investigate the different dynamical fields on the simulated tracer transport, ozone and other chemical species. Both simulations have been run from 1979 to 2018. First we will assess the impact of different reanalysis data on the idealised tracers when the model includes additional process of the gravitational separation of gases (e.g., Ar/N2) and compare the model results with dataset of gravitational fractionation of Ar/N2 and AoA observations made on flask samples from three airborne research projects. Modelled AoA will be also compared with MIPAS data.  Then we will focus on the polar ozone loss from late 1990 to 2018 and quntify<br>the amount of chemical ozone loss using both models and satellite observations as well as  SAOZ measurements. The year-to-year variation of polar ozone depletion will also be discussed, in particular for the recent years of decreasing stratospheric chlorine loading. </p> </div>

2005 ◽  
Vol 5 (6) ◽  
pp. 12373-12401
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that modelling the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2011 ◽  
Vol 11 (2) ◽  
pp. 3857-3884 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
...  

Abstract. A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter/spring 2004/05. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the Arctic ozone loss for Arctic winter/spring 2004/05 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. The overestimated denitrification causes a small overestimation of Arctic polar ozone loss (~5–10% at ~17 km) by the standard model. Use of the DLAPSE scheme improves the simulation of Arctic ozone depletion compared with the inferred partial column ozone loss from ozonesondes and satellite data. Overall, denitrification is responsible for a ~30% enhancement in O3 depletion for Arctic winter/spring 2004/05, suggesting that the successful simulation of the impact of denitrification on Arctic ozone depletion also requires the use of a detailed microphysical PSC scheme in the model.


2007 ◽  
Vol 7 (9) ◽  
pp. 2357-2369 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
M. Dorf ◽  
K. Pfeilsticker ◽  
P. Ricaud

Abstract. We have used an off-line three-dimensional (3-D) chemical transport model (CTM) to study long-term changes in stratospheric O3. The model was run from 1977–2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH) column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields (e.g. temperature, ozone) which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase because of the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes in the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading.


2006 ◽  
Vol 6 (6) ◽  
pp. 1599-1609 ◽  
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that the modelling of the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2005 ◽  
Vol 5 (3) ◽  
pp. 597-609 ◽  
Author(s):  
C. S. Singleton ◽  
C. E. Randall ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
W. Feng ◽  
...  

Abstract. The SLIMCAT three-dimensional chemical transport model (CTM) is used to infer chemical ozone loss from Polar Ozone and Aerosol Measurement (POAM) III observations of stratospheric ozone during the Arctic winter of 2002-2003. Inferring chemical ozone loss from satellite data requires quantifying ozone variations due to dynamical processes. To accomplish this, the SLIMCAT model was run in a "passive" mode from early December until the middle of March. In these runs, ozone is treated as an inert, dynamical tracer. Chemical ozone loss is inferred by subtracting the model passive ozone, evaluated at the time and location of the POAM observations, from the POAM measurements themselves. This "CTM Passive Subtraction" technique relies on accurate initialization of the CTM and a realistic description of vertical/horizontal transport, both of which are explored in this work. The analysis suggests that chemical ozone loss during the 2002-2003 winter began in late December. This loss followed a prolonged period in which many polar stratospheric clouds were detected, and during which vortex air had been transported to sunlit latitudes. A series of stratospheric warming events starting in January hindered chemical ozone loss later in the winter of 2003. Nevertheless, by 15 March, the final date of the analysis, ozone loss maximized at 425K at a value of about 1.2ppmv, a moderate amount of loss compared to loss during the unusually cold winters in the late-1990s. SLIMCAT was also run with a detailed stratospheric chemistry scheme to obtain the model-predicted loss. The SLIMCAT model simulation also shows a maximum ozone loss of 1.2ppmv at 425K, and the morphology of the loss calculated by SLIMCAT was similar to that inferred from the POAM data. These results from the recently updated version of SLIMCAT therefore give a much better quantitative description of polar chemical ozone loss than older versions of the same model. Both the inferred and modeled loss calculations show the early destruction in late December and the region of maximum loss descending in altitude through the remainder of the winter and early spring.


2004 ◽  
Vol 4 (6) ◽  
pp. 7011-7045
Author(s):  
C. S. Singleton ◽  
C. E. Randall ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
W. Feng ◽  
...  

Abstract. The SLIMCAT three-dimensional chemical transport model (CTM) is used to infer chemical ozone loss from Polar Ozone and Aerosol Measurement (POAM) III observations of stratospheric ozone during the Arctic winter of 2002–2003. Inferring chemical ozone loss from satellite data requires quantifying ozone variations due to dynamical processes. To accomplish this, the SLIMCAT model was run in a "passive" mode from early December until the middle of March. In these runs, ozone is treated as an inert, dynamical tracer. Chemical ozone loss is inferred by subtracting the model passive ozone, evaluated at the time and location of the POAM observations, from the POAM measurements themselves. This "CTM Passive Subtraction" technique relies on accurate initialization of the CTM and a realistic description of vertical/horizontal transport, both of which are explored in this work. The analysis suggests that chemical ozone loss during the 2002–2003 winter began in late December. This loss followed a prolonged period in which many polar stratospheric clouds were detected, and during which vortex air had been transported to sunlit latitudes. A series of stratospheric warming events starting in January hindered chemical ozone loss later in the winter of 2003. Nevertheless, by 15 March, the final date of the analysis, ozone loss maximized at 425 K at a value of about 1.2 ppmv, a moderate amount of loss compared to loss during the unusually cold winters in the late-1990s. SLIMCAT was also run with a detailed stratospheric chemistry scheme to obtain the model-predicted loss. The SLIMCAT model simulation also shows a maximum ozone loss of 1.2 ppmv at 425 K, and the morphology of the loss calculated by SLIMCAT was similar to that inferred from the POAM data. These results from the recently updated version of SLIMCAT therefore give a much better quantitative description of polar chemical ozone loss than older versions of the same model. Both the inferred and modeled loss calculations show the early destruction in late December and the region of maximum loss descending in altitude through the remainder of the winter and early spring.


2006 ◽  
Vol 111 (D20) ◽  
Author(s):  
Hongyu Liu ◽  
James H. Crawford ◽  
Robert B. Pierce ◽  
Peter Norris ◽  
Steven E. Platnick ◽  
...  

2011 ◽  
Vol 11 (13) ◽  
pp. 6559-6573 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
...  

Abstract. A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter 2004/2005. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the ozone loss for Arctic winter 2004/2005 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a coupled detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. Overall, denitrification is responsible for a ~30 % enhancement in O3 depletion compared with simulations without denitrification for Arctic winter 2004/2005, which is slightly larger than the inferred impact of denitrification on Arctic ozone loss for previous winters from different CTMs simulations. The overestimated denitrification from standard SLIMCAT simulation causes ~5–10 % more ozone loss at ~17 km compared with the simulation using the DLAPSE PSC scheme for Arctic winter 2004/2005. The calculated partial column ozone loss from SLIMCAT using the DLAPSE scheme is about 130 DU by mid-March 2005, which compares well with the inferred column ozone loss from ozonesondes and satellite data (127±21 DU).


2002 ◽  
Vol 20 (6) ◽  
pp. 847-862
Author(s):  
B. Grassi ◽  
G. Redaelli ◽  
G. Visconti

Abstract. A three-dimensional (3-D) Chemical Transport Model (CTM) of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex) along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC) surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS), although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3 decline as shown by the satellite during the investigated period, with a tendency, however, to underestimate the total column values inside the polar vortex during late winter. As possible causes of this model/observation difference we suggest an incorrect estimation of the vertical transport and of the tropospheric contribution.Key words. Atmospheric composition and structure (Middle atmosphere-composition and chemistry) Meterology and atmospheric dynamics (middle atmosphere dynamics)


2006 ◽  
Vol 6 (4) ◽  
pp. 6695-6722
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
M. Dorf ◽  
K. Pfeilsticker

Abstract. We have used an off-line three-dimensional (3-D) chemical transport model (CTM) to study long-term changes in stratospheric O3. The model was run from 1977–2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH) column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase to the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes to the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading.


Sign in / Sign up

Export Citation Format

Share Document