Global patterns of plant diversity and their evolutionary drivers

Author(s):  
Melanie Tietje ◽  
William J. Baker ◽  
Rafaël Govaerts ◽  
Stephen A. Smith ◽  
Miao Sun ◽  
...  

<p>Spatial patterns of plant diversity follow the well-known global latitudinal biodiversity gradient, however there is little consensus about the underlying causes for this pattern. Here we present a spatial analysis of a complete checklist of the world’s seed plants, integrated with a comprehensive plant Tree of Life. This combination allows insights into the evolutionary drivers of plant species richness patterns, specifically current plant biodiversity patterns, and the diversification processes that shaped them. Our study provides a comprehensive global species richness map and relates the observed species richness pattern to speciation rates derived from phylogeny, and with environmental variables, which are hypothesized to impact speciation rates. Initial results show that tropical rain forest regions, although being areas that contain among the highest numbers of species, are regions with comparatively low speciation rates, contradicting the widespread notion that rainforests are “cradles” of biodiversity. This finding seems further supported by contrasting association of environmental variables, like precipitation and temperature, with speciation rates and species richness.</p>

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 625
Author(s):  
Bikram Pandey ◽  
Nirdesh Nepal ◽  
Salina Tripathi ◽  
Kaiwen Pan ◽  
Mohammed A. Dakhil ◽  
...  

Understanding the pattern of species distribution and the underlying mechanism is essential for conservation planning. Several climatic variables determine the species diversity, and the dependency of species on climate motivates ecologists and bio-geographers to explain the richness patterns along with elevation and environmental correlates. We used interpolated elevational distribution data to examine the relative importance of climatic variables in determining the species richness pattern of 26 species of gymnosperms in the longest elevation gradients in the world. Thirteen environmental variables were divided into three predictors set representing each hypothesis model (energy-water, physical-tolerance, and climatic-seasonality); to explain the species richness pattern of gymnosperms along the elevational gradient. We performed generalized linear models and variation partitioning to evaluate the relevant role of environmental variables on species richness patterns. Our findings showed that the gymnosperms’ richness formed a hump-shaped distribution pattern. The individual effect of energy-water predictor set was identified as the primary determinant of species richness. While, the joint effects of energy-water and physical-tolerance predictors have explained highest variations in gymnosperm distribution. The multiple environmental indicators are essential drivers of species distribution and have direct implications in understanding the effect of climate change on the species richness pattern.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Araújo ◽  
Moreira ◽  
Falcão ◽  
Borges ◽  
Fagundes ◽  
...  

Host plants may harbor a variable number of galling insect species, with some species being able to harbor a high diversity of these insects, being therefore called superhost plants. In the present study, we tested the hypothesis that the occurrence of superhost plant species of genus Qualea (Vochysiaceae) affects the structure of plant–galling insect ecological networks in Brazilian Cerrado. We sampled a total of 1882 plants grouped in 131 species and 43 families, of which 64 species and 31 families of host plants hosted 112 galling insect species. Our results showed that occurrence of superhosts of genus Qualea increased the linkage density of plant species, number of observed interactions, and the size of plant–galling insect networks and negatively affected the network connectance (but had no effect on the residual connectance). Although the occurrence of Qualea species did not affect the plant species richness, these superhosts increased the species richness and the number of interactions of galling insects. Our study represents a step forward in relation to previous studies that investigated the effects of plant diversity on the plant–insect networks, showing that few superhost plant species alter the structure of plant–herbivore networks, even without having a significant effect on plant diversity.


2010 ◽  
Vol 26 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Kanvaly Dosso ◽  
Souleymane Konaté ◽  
Daouda Aidara ◽  
K. E. Linsenmair

Abstract:At Lamto, little is known about animal community responses to habitat variability resulting from fires and the mosaic pattern of the vegetation in general and in particular about that of termites which play key roles in this ecosystem. With a standardized method, data were collected on termites from four habitats differing in their vegetation cover and fire-history: annually burned savanna, savanna woodland, forest island and gallery forest. A range of environmental variables was measured and correlated with species abundances. The number of termite species collected in the savanna woodland was very close to that found in the gallery forest while the forest island was the richest habitat. The species richness of the savanna woodland and forest island seemed partly due to their heterogeneous and transitional vegetation structures and variable food resources. With regard to the fire-history of habitats, Connell's intermediate disturbance hypothesis offers an explanation for differences in the patterns of habitat-specific species richness. Variation in species abundances was significantly correlated with only two environmental variables (soil pH and woody plant species richness). The pH appeared as the most influential factor for fungus-growers while tree invasion in the savanna strongly reduces the abundance of grass-feeding species (e.g. Trinervitermes geminatus). Although not significantly correlated with species abundances, soil carbon showed a positive correlation with the dominant soil-feeder Basidentitermes potens. As for wood-feeders, they were not strongly correlated with woody plant species richness; this fact might be linked to their use for other sources of nourishment. Overall, it appears that habitat variability in the Lamto reserve contributes to the maintenance of different subsets of the termite community.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin Hejda ◽  
Jan Čuda ◽  
Klára Pyšková ◽  
Guin Zambatis ◽  
Llewellyn C. Foxcroft ◽  
...  

AbstractTo identify factors that drive plant species richness in South-African savanna and explore their relative importance, we sampled plant communities across habitats differing in water availability, disturbance, and bedrock, using the Kruger National Park as a model system. We made plant inventories in 60 plots of 50 × 50 m, located in three distinct habitats: (i) at perennial rivers, (ii) at seasonal rivers with water available only during the rainy season, and (iii) on crests, at least ~ 5 km away from any water source. We predicted that large herbivores would utilise seasonal rivers’ habitats less intensely than those along perennial rivers where water is available throughout the year, including dry periods. Plots on granite harboured more herbaceous and shrub species than plots on basalt. The dry crests were poorer in herb species than both seasonal and perennial rivers. Seasonal rivers harboured the highest numbers of shrub species, in accordance with the prediction of the highest species richness at relatively low levels of disturbance and low stress from the lack of water. The crests, exposed to relatively low pressure from grazing but stressed by the lack of water, are important from the conservation perspective because they harbour typical, sometimes rare savanna species, and so are seasonal rivers whose shrub richness is stimulated and maintained by the combination of moderate disturbance imposed by herbivores and position in the middle of the water availability gradient. To capture the complexity of determinants of species richness in KNP, we complemented the analysis of the above local factors by exploring large-scale factors related to climate, vegetation productivity, the character of dominant vegetation, and landscape features. The strongest factor was temperature; areas with the highest temperatures reveal lower species richness. Our results also suggest that Colophospermum mopane, a dominant woody species in the north of KNP is not the ultimate cause of the lower plant diversity in this part of the park.


2008 ◽  
Vol 4 (4) ◽  
pp. 382-384 ◽  
Author(s):  
Soo Hyung Eo ◽  
John P Wares ◽  
John P Carroll

The trend for increasing biodiversity from the poles to the tropics is one of the best-known patterns in nature. This latitudinal biodiversity gradient has primarily been documented so far with extant species as the measure of biodiversity. Here, we evaluate the global pattern in biodiversity across latitudes based on the magnitude of genetic population divergence within plant species, using a robust spatial design to compare published allozyme datasets. Like the pattern of plant species richness across latitudes, we expected the divergence among populations of current plant species would have a similar pattern and direction. We found that lower latitudinal populations showed greater genetic differentiation within species after controlling for geographical distance. Our analyses are consistent with previous population-level studies in animals, suggesting a high possibility of tropical peaks in speciation rates associated with observed levels of species richness.


Sign in / Sign up

Export Citation Format

Share Document