An adaptive convolutional neural network model for ionosphere prediction

Author(s):  
Maria Kaselimi ◽  
Nikolaos Doulamis ◽  
Demitris Delikaraoglou

<p>Knowledge of the ionospheric electron density is essential for a wide range of applications, e.g., telecommunications, satellite positioning and navigation, and Earth observation from space. Therefore, considerable efforts have been concentrated on modeling this ionospheric parameter of interest. Ionospheric electron density is characterized by high complexity and is space−and time−varying, as it is highly dependent on local time, latitude, longitude, season, solar cycle and activity, and geomagnetic conditions. Daytime disturbances cause periodic changes in total electron content (diurnal variation) and additionally, there are multi-day periodicities, seasonal variations, latitudinal variations, or even ionospheric perturbations that cause fluctuations in signal transmission.</p><p>Because of its multiple band frequencies, the current Global Navigation Satellite Systems (GNSS) offer an excellent example of how we can infer ionosphere conditions from its effect on the radiosignals from different GNSS band frequencies. Thus, GNSS techniques provide a way of directly measuring the electron density in the ionosphere. The main advantage of such techniques is the provision of the integrated electron content measurements along the satellite-to-receiver line-of-sight at a large number of sites over a large geographic area.</p><p>Deep learning techniques are essential to reveal accurate ionospheric conditions and create representations at high levels of abstraction. These methods can successfully deal with non-linearity and complexity and are capable of identifying complex data patterns, achieving accurate ionosphere modeling. One application that has recently attracted considerable attention within the geodetic community is the possibility of applying these techniques in order to model the ionosphere delays based on GNSS satellite signals.</p><p>This paper deals with a modeling approach suitable for predicting the ionosphere delay at different locations of the IGS network stations using an adaptive Convolutional Neural Network (CNN). As experimental data we used actual GNSS observations from selected stations of the global IGS network which were participating in the still-ongoing MGEX project that provides various satellite signals from the currently available multiple navigation satellite systems. Slant TEC data (STEC) were obtained using the undifferenced and unconstrained PPP technique. The STEC data were provided by GAMP software and converted to VTEC data values. The proposed CNN uses the following basic information: GNSS signal azimuth and elevation angle, GNSS satellite position (x and y). Then, the adaptive CNN utilizes these data inputs along with the predicted VTEC values of the first CNN for the previous observation epochs. Topics to be discussed in the paper include the design of the CNN network structure, training strategy, data analysis, as well as preliminary testing results of the ionospheric delays predictions as compared with the IGS ionosphere products.   </p>

Author(s):  
M. Kaselimi ◽  
N. Doulamis ◽  
A. Doulamis ◽  
D. Delikaraoglou

Abstract. This paper proposes a model suitable for predicting the ionosphere delay at different locations of receiver stations using a temporal 1D convolutional neural network (CNN) model. CNN model can optimally addresses non-linearity and model complex data through the creation of powerful representations at hierarchical levels of abstraction. To be able to predict ionosphere values for each visible satellite at a given station, sequence-to-sequence (seq2seq) models are introduced. These models are commonly used for solving sequential problems. In seq2seq models, a sequential input is entered to the model and the output has also a sequential form. Adopting this structure help us to predict ionosphere values for all satellites in view at every epoch. As experimental data, we used global navigation satellite system (GNSS) observations from selected sites in central Europe, of the global international GNSS network (IGS). The data used are part of the multi GNSS experiment (MGEX) project, that provides observations from multiple navigation satellite systems. After processing with precise point positioning (PPP) technique as implemented with GAMP software, the slant total electron content data (STEC) were obtained. The proposed CNN uses as input the ionosphere pierce points (IPP) points coordinates per visible satellite. Then, based on outcomes of the ionosphere parameters, the temporal CNN is deployed to predict future TEC variations.


Author(s):  
Michael D. Paskett ◽  
Mark R. Brinton ◽  
Taylor C. Hansen ◽  
Jacob A. George ◽  
Tyler S. Davis ◽  
...  

Abstract Background Advanced prostheses can restore function and improve quality of life for individuals with amputations. Unfortunately, most commercial control strategies do not fully utilize the rich control information from residual nerves and musculature. Continuous decoders can provide more intuitive prosthesis control using multi-channel neural or electromyographic recordings. Three components influence continuous decoder performance: the data used to train the algorithm, the algorithm, and smoothing filters on the algorithm’s output. Individual groups often focus on a single decoder, so very few studies compare different decoders using otherwise similar experimental conditions. Methods We completed a two-phase, head-to-head comparison of 12 continuous decoders using activities of daily living. In phase one, we compared two training types and a smoothing filter with three algorithms (modified Kalman filter, multi-layer perceptron, and convolutional neural network) in a clothespin relocation task. We compared training types that included only individual digit and wrist movements vs. combination movements (e.g., simultaneous grasp and wrist flexion). We also compared raw vs. nonlinearly smoothed algorithm outputs. In phase two, we compared the three algorithms in fragile egg, zipping, pouring, and folding tasks using the combination training and smoothing found beneficial in phase one. In both phases, we collected objective, performance-based (e.g., success rate), and subjective, user-focused (e.g., preference) measures. Results Phase one showed that combination training improved prosthesis control accuracy and speed, and that the nonlinear smoothing improved accuracy but generally reduced speed. Phase one importantly showed simultaneous movements were used in the task, and that the modified Kalman filter and multi-layer perceptron predicted more simultaneous movements than the convolutional neural network. In phase two, user-focused metrics favored the convolutional neural network and modified Kalman filter, whereas performance-based metrics were generally similar among all algorithms. Conclusions These results confirm that state-of-the-art algorithms, whether linear or nonlinear in nature, functionally benefit from training on more complex data and from output smoothing. These studies will be used to select a decoder for a long-term take-home trial with implanted neuromyoelectric devices. Overall, clinical considerations may favor the mKF as it is similar in performance, faster to train, and computationally less expensive than neural networks.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2020 ◽  
Author(s):  
John Bosco Habarulema ◽  
Nicolas Bergeot ◽  
Jean-Marie Chevalier ◽  
Elisa Pinat ◽  
Dalia Buresova ◽  
...  

<p>The ionospheric electron density response to the occurrence of geomagnetic storms remains one of the challenges that is less understood partially on both short and long-term scales. This is even more complicated given that different locations within the same latitude region (for example in mid-latitudes) at times show different electron density responses as a result of complex dynamic and electrodynamics processes that may be present during one storm duration.  Mid-latitude regions are influenced by storm induced processes originating from both low and high latitudes. Using a combination of ionosonde and Global Navigational Satellite Systems (GNSS) observations, we show differences and or similarities in the electron density response during selected storm periods in both northern and southern hemisphere over the Europe-African sector. Physical mechanisms at play within different storm phases are explored using both observations and empirical modeling efforts.  </p>


Sign in / Sign up

Export Citation Format

Share Document