Interhemispheric comparison of the ionospheric electron density response during geomagnetic storm conditions

Author(s):  
John Bosco Habarulema ◽  
Nicolas Bergeot ◽  
Jean-Marie Chevalier ◽  
Elisa Pinat ◽  
Dalia Buresova ◽  
...  

<p>The ionospheric electron density response to the occurrence of geomagnetic storms remains one of the challenges that is less understood partially on both short and long-term scales. This is even more complicated given that different locations within the same latitude region (for example in mid-latitudes) at times show different electron density responses as a result of complex dynamic and electrodynamics processes that may be present during one storm duration.  Mid-latitude regions are influenced by storm induced processes originating from both low and high latitudes. Using a combination of ionosonde and Global Navigational Satellite Systems (GNSS) observations, we show differences and or similarities in the electron density response during selected storm periods in both northern and southern hemisphere over the Europe-African sector. Physical mechanisms at play within different storm phases are explored using both observations and empirical modeling efforts.  </p>

2020 ◽  
Author(s):  
Maria Kaselimi ◽  
Nikolaos Doulamis ◽  
Demitris Delikaraoglou

<p>Knowledge of the ionospheric electron density is essential for a wide range of applications, e.g., telecommunications, satellite positioning and navigation, and Earth observation from space. Therefore, considerable efforts have been concentrated on modeling this ionospheric parameter of interest. Ionospheric electron density is characterized by high complexity and is space−and time−varying, as it is highly dependent on local time, latitude, longitude, season, solar cycle and activity, and geomagnetic conditions. Daytime disturbances cause periodic changes in total electron content (diurnal variation) and additionally, there are multi-day periodicities, seasonal variations, latitudinal variations, or even ionospheric perturbations that cause fluctuations in signal transmission.</p><p>Because of its multiple band frequencies, the current Global Navigation Satellite Systems (GNSS) offer an excellent example of how we can infer ionosphere conditions from its effect on the radiosignals from different GNSS band frequencies. Thus, GNSS techniques provide a way of directly measuring the electron density in the ionosphere. The main advantage of such techniques is the provision of the integrated electron content measurements along the satellite-to-receiver line-of-sight at a large number of sites over a large geographic area.</p><p>Deep learning techniques are essential to reveal accurate ionospheric conditions and create representations at high levels of abstraction. These methods can successfully deal with non-linearity and complexity and are capable of identifying complex data patterns, achieving accurate ionosphere modeling. One application that has recently attracted considerable attention within the geodetic community is the possibility of applying these techniques in order to model the ionosphere delays based on GNSS satellite signals.</p><p>This paper deals with a modeling approach suitable for predicting the ionosphere delay at different locations of the IGS network stations using an adaptive Convolutional Neural Network (CNN). As experimental data we used actual GNSS observations from selected stations of the global IGS network which were participating in the still-ongoing MGEX project that provides various satellite signals from the currently available multiple navigation satellite systems. Slant TEC data (STEC) were obtained using the undifferenced and unconstrained PPP technique. The STEC data were provided by GAMP software and converted to VTEC data values. The proposed CNN uses the following basic information: GNSS signal azimuth and elevation angle, GNSS satellite position (x and y). Then, the adaptive CNN utilizes these data inputs along with the predicted VTEC values of the first CNN for the previous observation epochs. Topics to be discussed in the paper include the design of the CNN network structure, training strategy, data analysis, as well as preliminary testing results of the ionospheric delays predictions as compared with the IGS ionosphere products.   </p>


2013 ◽  
Vol 31 (8) ◽  
pp. 1459-1462 ◽  
Author(s):  
J. K. Shi ◽  
Z. Wang ◽  
K. Torkar ◽  
M. Friedrich ◽  
X. Wang ◽  
...  

Abstract. According to the sounding rocket experiment conducted at Hainan ionospheric observatory (19.5° N, 109.1° E), a valley between the E layer and F layer in the ionospheric electron density profile is observed and presented. The sounding rocket was launched in the morning (06:15 LT) on 7 May 2011, and the observed electron density profile outside the valley agrees with the simultaneous observation by the DPS-4 digisonde at the same station. The width of the observed valley was about 42 km, the depth almost 50%, and the altitude of the electron density minimum 123.5 km. This is the first observation of the E–F valley in the low-latitude region in the East Asian sector. The results are also compared with models, and the physical mechanism of the observed valley is discussed in this paper.


Space Weather ◽  
2014 ◽  
Vol 12 (4) ◽  
pp. 205-216 ◽  
Author(s):  
R. Handzo ◽  
J. M. Forbes ◽  
Bodo Reinisch

2013 ◽  
Vol 13 (2) ◽  
pp. 375-384 ◽  
Author(s):  
Y. B. Yao ◽  
P. Chen ◽  
S. Zhang ◽  
J. J. Chen

Abstract. Observations from the South African TrigNet global navigation satellite system (GNSS) and vertical total electron content (VTEC) data from the Jason-1 satellite were used to analyze the variations in ionospheric electron density profiles over South Africa before and after the severe geomagnetic storms on 15 May 2005. Computerized ionospheric tomography (CIT) was used to inverse the 3-D structure of ionospheric electron density and its response to the magnetic storms. Inversion results showed that electron density significantly increased at 10:00 UT, 15 May compared with that at the same period on 14 May. Positive ionospheric storms were observed in the inversion region during the magnetic storms. Jason-1 data show that the VTEC observed on descending orbits on 15 May significantly increased, whereas that on ascending orbits only minimally changed. This finding is identical to the CIT result.


GPS Solutions ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 1125-1137 ◽  
Author(s):  
Chengli She ◽  
Weixing Wan ◽  
Xinan Yue ◽  
Bo Xiong ◽  
You Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document