Prediction uncertainties in salt detached fold and thrust belts – examples from the surface and subsurface of the Northern Calcareous Alps (Austria)

Author(s):  
Klaus Pelz ◽  
Pablo Granado ◽  
Michael König ◽  
Elizabeth P. Wilson ◽  
Philipp Strauss ◽  
...  

<p>As shown for fold and thrust belts worldwide and for the Northern Calcareous Alps (NCA) in particular, the initial thickness and spatial distribution of autochthonous salt exerts fundamental control on deformation localization and structural style. The initial sedimentary geometries of mini-basins formed by downbuilding into or rafting on salt do influence the geometries of thrust sheets during subsequent shortening. The lateral extent and spacing of individual thrust sheets and the overall cylindricity of structures is governed by initial facies changes and thickness variations within and across mini-basins and salt ridges between them. During convergence, remaining inflated salt localizes shortening whereas mini-basins may react as rather rigid blocks. As deformation culminates at these secondary welds that eventually become thrusted and squeezed, apparent structural closures might become exploration targets but potentially yield more complex internal geometries and less predictable facies distribution.</p><p>In this contribution we show several cross sections constrained by surface and subsurface data in the eastern NCA and below the Vienna Basin. We compare areas with abrupt changes in stratigraphic thickness, limited lateral extent of individual thrust sheets and highly non-cylindrical structural style along strike to areas where thrust sheets extend over several tens of kilometers along strike with remarkably cylindrical structures, little thickness variations and less abrupt facies changes. Predictive capabilities in underconstrained areas (i.e., insufficient seismic imaging and/or resolution, lack of well control, bad outcrop conditions) are analyzed and compared to closures with well control and pre-drill expectations. Evidently, culminations can be predicted with more confidence in areas with little variation in facies and sedimentary thicknesses. Reliability of predictions generally degrades with decreasing thrust sheet size, observable non-cylindricity within and in between thrust sheets, and with increased complexities at the edges of mini-basins (e.g., squeezed and thrusted flaps). Internal geometries of mini-basins need to be imaged and analyzed properly to narrow down these uncertainties at potential culminations along the edges.</p>

Geology ◽  
2018 ◽  
Vol 47 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Pablo Granado ◽  
Eduard Roca ◽  
Philipp Strauss ◽  
Klaus Pelz ◽  
Josep Anton Muñoz

2020 ◽  
Author(s):  
Hugo Ortner ◽  
Sinah Kilian

<p>Tectonic subdivisions of larger geologic units reflect the geologic knowledge at the time of creation. In many thrust belts the original subdivisions had been created during the first comprehensive mapping campaigns at the end of the 19<sup>th</sup> to early 20<sup>th</sup> century and reflect the geologic knowledge at that time. Even if many thrusts were identified correctly, no formal framework existed to give guidelines of how to distinguish tectonic units. Nevertheless, these subdivisions are still in use.</p><p>We analyze the thrust sheets of the Northern Calcareous Alps of western Austria and southern Germany and test the implicit assumptions underlying most tectonic subdivisions against field observations:</p><p>Assumption 1: Thrust transport is large and thrusts do not end laterally. However, several major thrusts do loose stratgraphic offset and end laterally.</p><p>Assumption 2: Allochthons are surrounded by thrusts on all sides. Unfortunately, any fault has been used to delimit allochthons.</p><p>Assumption 3: Thrusting should bring old on young rocks. In some cases, allochthons have been delimited by out-of-sequence thrusts, that stack young on old rocks. In other cases, the allochthon is a mountain-size glide block that was buried by younger sediments, and the trace of the thrust is an unconformity in the field.</p><p>As a consequence we propose a revised tectonic subdivision of the western part of the NCA, that avoids some of the problems discussed here, and is entirely based on the emplacement of old-on-young rocks across thrusts.</p>


2020 ◽  
Author(s):  
Antonio M. Casas ◽  
Pablo Calvín ◽  
Pablo Santolaria ◽  
Tania Mochales ◽  
Hmidou El-Ouardi ◽  
...  

<p> Multiple constraints, including poorly known parameters, determine along-strike changes of frontal thrust structures in fold-and-thrust belts. Along the 400 km long, continuous Central Moroccan Atlas belt, structural style shows significant changes, preserving similar figures of shortening. This implies the absence of large-scale vertical-axes rotations, as demonstrated by paleomagnetic studies accomplished during the development of this project. The main factors controlling thrust geometry are:</p><p>- the geometry of Triassic-Jurassic extensional basins subsequently inverted during Cenozoic compression, with especial mention to changes of cover thickness and orientation of structures</p><p>- transfer of displacement between the northern and southern thrust systems</p><p>- transfer of displacement between the basement (Paleozoic) units and the Mesozoic cover through the Upper Triassic detachment. This factor strongly determines the width of the belt in each transect, as it occurs in other basement-and-cover fold-and-thrust belts</p><p>- cover/detachment thickness ratio.</p><p>- localization and partitioning of deformation between different structures in the inner part and the borders of the massif</p><p>- amount of superposition between different cover thrust sheets, including folded thrusts</p><p>- structural style, changing from thin-skinned style to large recumbent folds along strike, probably depending on P-T conditions and cover thickness</p><p>- backthrusts related to low cover thickness/detachment thickness ratio, especially frequent in the northern Atlas thrusts</p><p>- differential shortening between sections related to layer-parallel shortening and folds associated with cleavage development in the central part of the chain</p><p>- influence of previous structures, such as individual diapirs, salt walls or igneous intrusions that modify the pre-compressional geometry of the detachment level, nucleate structures and favor buttressing. This feature can also be a source of errors in the calculation of shortening.</p><p> All these factors result in strong along-strike changes such as branching of thrust surfaces, progression of deformation towards the foreland and differential cleavage development. Influence of structures developed during the basinal/diapiric/igneous stage results in a variability of trends that varies between from less than 10° to more than 30°, what allows in some cases to distinguish between structures controlled by basinal features and newly formed thrusts.</p><p>In spite of the different techniques for cross-sections reconstruction, and in some cases, the different interpretations for the origin of structures, the shortening figures obtained along the chain are remarkably constant, on the range of 35 km, thus implying a 18 to 30% of shortening for most of the transects what attests for the reliability of the results.</p><p>Recognition and quantification of factors controlling the development of structures is the fundamental step to determine the main thrust surfaces, and the secondary backthrusts in a region where basin inversion is one of the main constraints. Structural criteria point to a dominant southward vergence and secondary northwards-directed thrusts. Minor strike-slip components were probably localized in the core of the chain. Present-day 3-D reconstruction of the Atlas is currently being done considering all these inputs as well as those obtained from merging the vast dataset obtained.</p>


10.1144/sp490 ◽  
2020 ◽  
Vol 490 (1) ◽  
pp. NP-NP
Author(s):  
J. A. Hammerstein ◽  
R. Di Cuia ◽  
M. A. Cottam ◽  
G. Zamora ◽  
R. W. H. Butler

2016 ◽  
Vol 187 (2) ◽  
pp. 83-104 ◽  
Author(s):  
Josselin Berthelon ◽  
William Sassi

Abstract Using the geologist’s interpretation of 6 published balanced cross-sections in the fold and thrust belts of the northwestern Mediterranean, a comparative analysis of the interpreted subsurface structural architecture is used to address the links between the structural style and the mechanics of fold and thrust emplacement. For each cross-section example, the geo-dataset and the methods used by the interpreters are different in quantity and quality. Here we have examined how useful is the content of information of each cross-section to constrain the structural evolution scenario. Each interpretation is examined according to considerations of the mechanics of sedimentary basin deformation and how uncertain is the extrapolation of fault trajectory at depth. It is shown that each case reveals a particular type of structural style: thin-skin or thick skin tectonics, fault-related folding, pre-existing fault pattern. The present structural analysis is used to determine for each cross-section the nature of the mechanical problem to address that will reduce uncertainty on the geologic scenario reconstruction. The proposed mechanical boundary conditions could serve to develop analog or numerical models that aim at testing the mechanical validity of the structural scenario of fold and thrust emplacement.


2019 ◽  
Vol 112 (1) ◽  
pp. 62-83
Author(s):  
Sinah Kilian ◽  
Hugo Ortner

AbstractWe present the results of a field study in the Karwendel mountains in the western Northern Calcareous Alps, where we analysed the boundary between two major thrust sheets in detail in a key outcrop where nappe tectonics had been recognized already at the beginning of the 20th century. We use the macroscopic structural record of thrust sheet transport in the footwall and hanging wall of this boundary, such as folds, foliation and faults. In the footwall, competent stratigraphic units tend to preserve a full record of deformation while incompetent units get pervasively overprinted and only document the youngest deformation.Transport across the thrust persisted throughout the deformation history of the Northern Calcareous Alps from the late Early Cretaceous to the Miocene. As a consequence of transtensive, S-block down strike-slip tectonics, postdating folding of the major thrust, new out-of-sequence thrusts formed that climbed across the step, and ultimately placed units belonging to the footwall of the initial thrust onto its hanging wall.One of these out-of-sequence thrusts had been used to delimit the uppermost large thrust sheet (Inntal thrust sheet) of the western Northern Calcareous against the next, tectonically deeper, (Lechtal) thrust sheet. Based on the structural geometry of the folded thrust and the age of the youngest sediments below the thrust, we redefine the thrust sheets, and name the combined former Inntal- and part of the Lechtal thrust sheet as the new Karwendel thrust sheet and the former Allgäu- and part of the Lechtal thrust sheet as the new Tannheim thrust sheet.


Author(s):  
Hugo Ortner ◽  
Sinah Kilian

AbstractWe investigate the tectonic evolution of the Wetterstein and Mieming mountains in the western Northern Calcareous Alps (NCA) of the European Eastern Alps. In-sequence NW-directed stacking of thrust sheets in this thin-skinned foreland thrust belt lasted from the Hauterivian to the Cenomanian. In the more internal NCA major E-striking intracontinental transform faults dissected the thrust belt at the Albian–Cenomanian boundary that facilitated ascent of mantle melts feeding basanitic dykes and sills. Afterwards, the NCA basement was subducted, and the NCA were transported piggy-back across the tectonically deeper Penninic units. This process was accompanied by renewed Late Cretaceous NW-directed thrusting, and folding of thrusts. During Paleogene collision, N(NE)-directed out-of-sequence thrusts developed that offset the in-sequence thrust. We use this latter observation to revise the existing tectonic subdivision of the western NCA, in which these out-of-sequence thrusts had been used to delimit nappes, locally with young-on-old contacts at the base. We define new units that represent thrust sheets having exclusively old-on-young contacts at their base. Two large thrust sheets build the western NCA: (1) the tectonically deeper Tannheim thrust sheet and (2) the tectonically higher Karwendel thrust sheet. West of the Wetterstein and Mieming mountains, the Imst part of the Karwendel thrust sheet is stacked by an out-of-sequence thrust onto the main body of the Karwendel thrust sheet, which is, in its southeastern part, in lateral contact with the latter across a tear fault.


2021 ◽  
Author(s):  
Ferdinando Musso Piantelli ◽  
David Mair ◽  
Marco Herwegh ◽  
Alfons Berger ◽  
Eva Kurmann ◽  
...  

<p>Inversion of passive margins and their transportation into fold-and-thrust belts is a critical stage of mountain building processes and their structural interpretation is fundamental for understanding collisional orogens. Due to the multitude of parameters that influence their formation (e.g. the interaction between sedimentary cover and basement, the mechanical stratigraphy or the rheology of different rock types) as well as along-strike internal variations, a single cross-sectional view is insufficient in exploring the 3D evolution of a fold-and-thrust belt. Hence, a 3D geological characterization is required to better comprehend such complex systems. Based on a detailed digital map, a 3D structural model of the current tectonic situation and sequential retrodeformation, we elaborate the 3D evolution of a part of the former European passive continental margin. In this setting, we focus on the Doldenhorn Nappe (DN) and the underlying western Aar massif (external Central Alps, Switzerland). The DN is part of the Helvetic nappe system and consists of a large-scale recumbent fold with a thin inverted limb of intensively deformed sediments (Herwegh and Pfiffner 2005). The sedimentary rocks of the DN were deposited in Mesozoic-Cenozoic times in a small-sized basin, which has been inverted during the compression of the Alpine orogeny (Burkhard 1988). Along NNW-SSE striking geological cross-sections, restoration techniques reveal the original asymmetric triangular shape of the DN basin and how the basin has been exhumed from ~ -12 km (Berger et al. 2020) to its present position at 4km elevation above sea level throughout several Alpine deformation stages. Moreover, the model allows to visualize the current structural position of the DN and the massif as well as the geometric and overprinting relationships of the articulated deformation sequence that shaped the investigated area throughout the Alpine evolution. Here we document that: (i) the DN is a strongly non-cylindrical recumbent fold that progressively pinches out toward the NE; (ii) significant along-strike (W-E) stratigraphy thickness variations are reflected in structural variations from a single basal thrust deformation (W) to an in-sequence thrust deformation (E); and (iii) the progressive exhumation of the basement units towards the E and thrusting towards the N. In this context, special emphasis is given to illustrate how three-dimensional geometry of inherited pre-orogenic structures (e.g., Variscan-Permian and rifting related basement cover structures) play a key role in the structural style of fold-and-thrust belts. In summary, today’s structural position of the DN is the result of the inversion of a small basin in an early stage of thrusting, which was followed by sub-vertical buoyancy driven exhumation of the Aar massif and subsequent thrust related shortening. All three stages are deeply coupled with an original non-cylindrical shape of the former European passive continental margin.</p>


2020 ◽  
Author(s):  
Zhidong Gu

<p>The eastern Sichuan Basin, South China, is characterized by approximately parallel thin-skinned fold-and-thrust belts with exposed narrow anticlines and wide synclines. The structural deformation, however, has remained controversial due to the previous poor seismic data. In this study, the new collected pre-stack long-offset 2D- and 3D seismic data have been applied, and a 200-km long cross section perpendicular to the fold-and-thrust belts has been constructed to analyze the structural style and geometric and kinematic evolution. The stratigraphic succession is composed of competent layers separated by three main incompetent layers being multiple detachments, which are the Cambrian evaporites, the Lower Silurian shales, and the Middle-Lower Triassic evaporites, respectively. The basal detachment, the Cambrian evaporites, played a dominant role in the structural deformation, above which the fold-and-thrust belts were generated, and the middle and top detachments accommodated the displacement during the deformation. The main structural styles are detachment folds, fault propagation folds, back thrusts and basement-involved folds. The evolution succession of the fold-and-thrust belts should be kink band, detachment folds, and sequential thrusts of the forelimb and backlimb of the folds. The style of deformation is dependent on the mechanical characters of stratigraphic succession, i.e., the thickness variation of competent and incompetent layers in the stratigraphic units.</p>


Sign in / Sign up

Export Citation Format

Share Document