A discussion on the validation of structural interpretations based on the mechanics of sedimentary basins in the northwestern Mediterranean fold-and-thrust belts

2016 ◽  
Vol 187 (2) ◽  
pp. 83-104 ◽  
Author(s):  
Josselin Berthelon ◽  
William Sassi

Abstract Using the geologist’s interpretation of 6 published balanced cross-sections in the fold and thrust belts of the northwestern Mediterranean, a comparative analysis of the interpreted subsurface structural architecture is used to address the links between the structural style and the mechanics of fold and thrust emplacement. For each cross-section example, the geo-dataset and the methods used by the interpreters are different in quantity and quality. Here we have examined how useful is the content of information of each cross-section to constrain the structural evolution scenario. Each interpretation is examined according to considerations of the mechanics of sedimentary basin deformation and how uncertain is the extrapolation of fault trajectory at depth. It is shown that each case reveals a particular type of structural style: thin-skin or thick skin tectonics, fault-related folding, pre-existing fault pattern. The present structural analysis is used to determine for each cross-section the nature of the mechanical problem to address that will reduce uncertainty on the geologic scenario reconstruction. The proposed mechanical boundary conditions could serve to develop analog or numerical models that aim at testing the mechanical validity of the structural scenario of fold and thrust emplacement.

2020 ◽  
Author(s):  
Anastasia Kushnareva ◽  
Artem Moskalenko ◽  
Alexander Pasenko

<p>The Talas Range forms the northwest part of the Caledonides of the Northern Tian Shan. Based on differences in the structural style, metamorphism and sedimentary successions, three thrust sheets have been identified – the Uzunakhmat, Talas, and Kumyshtag thrust sheets. The Talas and Kumyshtag thrust sheets consist of Neoproterozoic-Ordovician terrigenous and carbonate rock units, whereas the Uzunakhmat thrust sheet consists of Neoproterozoic terrigenous rocks metamorphosed up to greenschist facies. The Uzunakhmat thrust sheet is separated from the Talas and Kumyshtag thrust sheets by the southwest-dipping Central Talas thrust (CTT). The dextral strike-slip Talas-Fergana Fault bounds the Uzunakhmat thrust sheet in the southwest. The main deformation events occurred in the Middle-Late Ordovician.</p><p>Structural and strain studies were done along profiles normal to the strike of folds and faults and located in the northwest and southeast parts of the Uzunakhmat thrust sheet. We also incorporate in our study structural profile in the central part of the Uzunakhmat thrust sheet, documented by Khudoley (1993) and Voytenko & Khudoley (2012).</p><p>The main strain indicators were detrital quartz grains in sandstones. Rf/φ and Normalized Fry methods were used to identify the amount of strain. Oblate ellipsoids predominate with Rxz values varying mostly from 1,6 to 2,4. Long axes of strain ellipsoids are sub-horizontal with the southeast to east-southeast trend. Similar trends have long axes of the anisotropy magnetic susceptibility ellipsoid being parallel to fold axes, cleavage-bedding intersection and mineral lineation as well as the trend of the major thrusts, including CTT.</p><p>The modern shape of the Uzunakhmat thrust sheet is similar to an elongated triangle, pinching out northwest and expanding southeast. Cross-section balancing corrected for the amount of strain shows along-strike decreasing of shortening in the southeast direction. Total shortening varies from 35% to 55% between sections located about 15 km from each other. Such significant variation in shortening corresponds to variation in structural style with much more tight folds and more numerous thrusts for cross-sections with a higher amount of shortening. However, the restored length of all cross-sections is quite similar pointing to the approximately rectangular initial shape of the Uzunakhmat thrust sheet. Our interpretation is that during the Caledonian tectonic events, the Uzunakhmat thrust sheet was displaced in the northwest direction with accompanied thrusting and folding of rock units within the thrust sheet. These deformations formed the modern shape of the thrust sheet in accordance with the amount of shortening detected by cross-section balancing. This interpretation also implies that modern erosion did not significantly affect shape of the Uzunakhmat thrust sheet formed after the Caledonian deformation.</p><p>Khudoley, A.K., 1993. Structural and strain analyses of the middle part of the Talassian Alatau ridge (Middle Asia, Kirgiystan). J. Struct. Geol. 6, 693–706.</p><p>Voytenko N.V., Khudoley A.K. Structural evolution of metamorphic rocks in the Talas Alatau, Tien Shan, Central Asia: Implication for early stages of the Talas-Ferghana Fault. // C. R. Geoscience. 2012. V. 344. P. 138–148.</p>


2019 ◽  
Vol 487 (1) ◽  
pp. 21-44 ◽  
Author(s):  
Robert W. H. Butler ◽  
Clare E. Bond ◽  
Mark A. Cooper ◽  
Hannah Watkins

AbstractThe margins to evolving orogenic belts experience near layer-parallel contraction that can evolve into fold–thrust belts. Developing cross-section-scale understanding of these systems necessitates structural interpretation. However, over the past several decades a false distinction has arisen between some forms of so-called fault-related folding and buckle folding. We investigate the origins of this confusion and seek to develop unified approaches for interpreting fold–thrust belts that incorporate deformation arising both from the amplification of buckling instabilities and from localized shear failures (thrust faults). Discussions are illustrated using short case studies from the Bolivian Subandean chain (Incahuasi anticline), the Canadian Cordillera (Livingstone anticlinorium) and Subalpine chains of France and Switzerland. Only fault–bend folding is purely fault-related and other forms, such as fault-propagation and detachment folds, all involve components of buckling. Better integration of understanding of buckling processes, the geometries and structural evolutions that they generate may help to understand how deformation is distributed within fold–thrust belts. It may also reduce the current biases engendered by adopting a narrow range of idealized geometries when constructing cross-sections and evaluating structural evolution in these systems.


2020 ◽  
Author(s):  
Antonio M. Casas ◽  
Pablo Calvín ◽  
Pablo Santolaria ◽  
Tania Mochales ◽  
Hmidou El-Ouardi ◽  
...  

<p> Multiple constraints, including poorly known parameters, determine along-strike changes of frontal thrust structures in fold-and-thrust belts. Along the 400 km long, continuous Central Moroccan Atlas belt, structural style shows significant changes, preserving similar figures of shortening. This implies the absence of large-scale vertical-axes rotations, as demonstrated by paleomagnetic studies accomplished during the development of this project. The main factors controlling thrust geometry are:</p><p>- the geometry of Triassic-Jurassic extensional basins subsequently inverted during Cenozoic compression, with especial mention to changes of cover thickness and orientation of structures</p><p>- transfer of displacement between the northern and southern thrust systems</p><p>- transfer of displacement between the basement (Paleozoic) units and the Mesozoic cover through the Upper Triassic detachment. This factor strongly determines the width of the belt in each transect, as it occurs in other basement-and-cover fold-and-thrust belts</p><p>- cover/detachment thickness ratio.</p><p>- localization and partitioning of deformation between different structures in the inner part and the borders of the massif</p><p>- amount of superposition between different cover thrust sheets, including folded thrusts</p><p>- structural style, changing from thin-skinned style to large recumbent folds along strike, probably depending on P-T conditions and cover thickness</p><p>- backthrusts related to low cover thickness/detachment thickness ratio, especially frequent in the northern Atlas thrusts</p><p>- differential shortening between sections related to layer-parallel shortening and folds associated with cleavage development in the central part of the chain</p><p>- influence of previous structures, such as individual diapirs, salt walls or igneous intrusions that modify the pre-compressional geometry of the detachment level, nucleate structures and favor buttressing. This feature can also be a source of errors in the calculation of shortening.</p><p> All these factors result in strong along-strike changes such as branching of thrust surfaces, progression of deformation towards the foreland and differential cleavage development. Influence of structures developed during the basinal/diapiric/igneous stage results in a variability of trends that varies between from less than 10° to more than 30°, what allows in some cases to distinguish between structures controlled by basinal features and newly formed thrusts.</p><p>In spite of the different techniques for cross-sections reconstruction, and in some cases, the different interpretations for the origin of structures, the shortening figures obtained along the chain are remarkably constant, on the range of 35 km, thus implying a 18 to 30% of shortening for most of the transects what attests for the reliability of the results.</p><p>Recognition and quantification of factors controlling the development of structures is the fundamental step to determine the main thrust surfaces, and the secondary backthrusts in a region where basin inversion is one of the main constraints. Structural criteria point to a dominant southward vergence and secondary northwards-directed thrusts. Minor strike-slip components were probably localized in the core of the chain. Present-day 3-D reconstruction of the Atlas is currently being done considering all these inputs as well as those obtained from merging the vast dataset obtained.</p>


1997 ◽  
Vol 37 (1) ◽  
pp. 390 ◽  
Author(s):  
G.T. Cooper ◽  
K.C. Hill

Recent advances in cross-section balancing software have simplified the application of basic geometric constraints to the analysis of basin development. Geometric analysis of field and seismic data allows the user to verify initial interpretations and also elucidates important information about the structural evolution of a basin. Principally, computerised balancing and restoration of cross-sections assists in constraining:the amount of crustal extension;trap geometries, particularly fault geometries through time;the geometry of key horizons at any time, revealing basin morphology and migration paths;the time and amount of maximum burial and hence hydrocarbon migration; andthe likely mechanisms involved in basin evolution. In turn, these parameters can be used to further assess hydrocarbon prospectivity by providing useful data for lithospheric modelling.This study utilises 2D cross-section balancing software (Geosec™) to decompact, balance and restore a series of regional onshore-offshore cross-sections based on both reflection seismic data in the Torquay Embayment and field mapping in the Otway Ranges. The thickness of eroded strata has been constrained by Apatite Fission Track and Vitrinite Reflectance analyses. The resulting section restoration suggests that the eastern Otway Basin experienced extension of 26 per cent in the Early Cretaceous and that the Otway Ranges were subjected to −8 per cent shortening during mid-Cretaceous inversion and −4 per cent shortening during Mio-Pliocene inversion.The structural style of the Otway Ranges and Torquay Embayment is typified by steep, relatively planar, en echelon, N and NE-dipping Early Cretaceous extension faults that were subsequently inverted and eroded during the Cenomanian and Mio-Pliocene. The structural style of the region shows strong similarities with oblique- rift analogue models suggesting that the extensional history of the region was strongly controlled by prevailing basement fabric.Lower Cretaceous source rocks in the eastern Otway Basin reached maximum maturity prior to mid-Cretaceous inversion with the exception of parts of the Torquay Embayment which may not have experienced significant uplift and erosion at this time. The lack of subsidence in the eastern Otway Basin prevented the deposition of significant amounts of Upper Cretaceous sediments which are proven reservoirs in the western Otway Basin and Gippsland Basin. Subsequent Tertiary burial was insufficient, in most regions, to allow the source rocks re-enter the oil generation window.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 759-762 ◽  
Author(s):  
OLIVIER LACOMBE ◽  
JONAS RUH ◽  
DENNIS BROWN ◽  
FARAMARZ NILFOUROUSHAN

Defining the structural style of fold-and-thrust belts is an important step for understanding the factors that control their long- and short-term dynamics, for comprehending seismic hazard associated with them, and for assessing their economic potential. While the thin-skinned model (no basement involvement) has long been the driving methodology for cross section construction and restoration of foreland fold-and-thrust belts, a wealth of new geological and geophysical studies have shown that they are often thick-skinned, that is, basement-involved.


10.1144/sp490 ◽  
2020 ◽  
Vol 490 (1) ◽  
pp. NP-NP
Author(s):  
J. A. Hammerstein ◽  
R. Di Cuia ◽  
M. A. Cottam ◽  
G. Zamora ◽  
R. W. H. Butler

Fire Research ◽  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
António Correia ◽  
Paula Lopes ◽  
João Rodrigues ◽  
José Correia

The fire resistance of a steel column is highly affected by the contact between the columns and the walls, leading in general to a favorable effect due to the reduction of temperatures. However, it leads to the Thermal Bowing effect, which is not more than a differential heating in the steel cross sections, causing an inversion of bending moments and an inversion of the deflections of the column. Thus, it is necessary to accurately assess the evolution of the temperature field in the cross section of the steel elements in contact with walls. In Eurocode 3 part 1-2, the structural design of steel elements in fire situation is performed with expressions for the calculation of the section factor of steel profiles, but different cases of positioning the columns and the surrounding walls could be considered as causing extremely high thermal gradients. In this paper, a new approach for the calculation of section factors for cases not included in table 4.2 of Eurocode 3, part 1- 2 are presented. This was achieved using numerical models with finite element modelling with the ABAQUS program, varying the cross-section of the columns, orientation of the web in relation to the walls, and the position and thickness of the walls, to achieve the desired section factors.


Sign in / Sign up

Export Citation Format

Share Document