Linking Lithospheric Structure, Mantle Flow and Intra-Plate Volcanism

Author(s):  
Thomas Duvernay ◽  
Rhodri Davies ◽  
Christopher Mathews ◽  
Angus Gibson ◽  
Stephan Kramer

<p>Several of Earth's intra-plate volcanic provinces cannot be explained solely through the classical mantle plume hypothesis. Instead, they are believed to be generated by shallower processes that involve the interplay between uppermost mantle flow and the base of Earth's heterogeneous lithosphere. The mechanisms most commonly invoked are edge-driven convection (EDC) and shear-driven upwelling (SDU), both of which act to focus upwelling flow, and the associated decompression melting, adjacent to steps in lithospheric thickness.</p><p>In this study, we first undertake a systematic numerical investigation, in both 2-D and 3-D, to quantify the sensitivity of EDC, SDU and their associated melting to several key controlling parameters, in the absence of mantle plumes. Our simulations demonstrate that the spatial and temporal characteristics of EDC are sensitive to the geometry and material properties of the lithospheric step, in addition to the depth-dependence of upper mantle viscosity. These simulations also indicate that asthenospheric shear can either enhance or reduce upwelling velocities and predicted melt volumes, depending upon the magnitude and orientation of flow relative to the lithospheric step. When combined, such sensitivities explain why step changes in lithospheric thickness, which are common along cratonic edges and passive margins, only produce volcanism at isolated points in space and time. Our predicted trends of melt production suggest that, in the absence of potential interactions with mantle plumes, EDC and SDU are viable mechanisms only for Earth's shorter-lived, low-volume intra-plate volcanic provinces.</p><p>To complement the results from our first numerical investigation, we subsequently explore how the upwelling of a mantle plume within our 3-D domain modifies the occurrence of melting, both in terms of spatio-temporal distribution and intensity. Preliminary results indicate that edges close to the location of plume impingement have their melting shut off as a result of the intense flow generated through sub-lithospheric spreading. Additionally, the heterogeneous distribution of continental lithosphere thickness constrains plume material spreading and results in melting patterns that do not directly reflect the path of the plume relative to the lithosphere, as described by classical mantle plume theory.</p>

2021 ◽  
pp. M56-2020-2
Author(s):  
Eva Bredow ◽  
Bernhard Steinberger

AbstractThis chapter describes the large-scale mantle flow structures beneath Antarctica as derived from global seismic tomography models of the present-day state. In combination with plate reconstructions, the time-dependent pattern of paleosubduction can be simulated and is also shown from the rarely seen Antarctic perspective. Furthermore, a dynamic topography model demonstrates which kind and scales of surface manifestations can be expected as a direct and observable result of mantle convection. The last section of the chapter features an overview of the classical concept of deep-mantle plumes from a geodynamic point of view and how recent insights, mostly from seismic tomography, have changed the understanding of plume structures and dynamics over the past decades. The long-standing and controversial hypothesis of a mantle plume beneath West Antarctica is summarised and addressed with geodynamic models, which estimate the excess heat flow of a potential plume at the bedrock surface. However, the predicted heatflow is small while differences in surface heat flux estimates are large, therefore the results are not conclusive with regard to the existence of a West Antarctic mantle plume. Finally, it is shown that global mantle flow would cause tilting of whole-mantle plume conduits beneath West Antarctica such that their base is predicted to be displaced about northward relative to the surface position, closer to the southern margin of the Pacific Large Low Shear Velocity Province.


2020 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Vrishin R. Soman

Earth’s dynamic lithospheric (plate) motions often are not obvious when considered in relation to the temporal stability of the crust. Seismic radiology experiments confirm that the extreme pressures and temperatures in the mantle, and to a lesser extent the asthenosphere, result in a heterogeneously viscous rheology. Occasionally, magmatic fluid makes its way through the lithospheric plate to the surface, appearing typically as a volcano, fissure eruption, or lava flow. When occurring away from the edges of plate boundaries, these long-lasting suppliers of lava, present over millions of years, are called mantle plumes, or ‘hotspots.’ Conventional definitions of mantle plumes note that they are stationary with respect to each other and the motion of the plates, passively tracing historical plate motion in volcanic formations such as the Hawaiian-Emperor island arc – the Plate Model. In this model, mantle plumes primarily occur as a consequence of lithospheric extension.Recent empirical studies, however, have demonstrated that hotspots are not as geographically consistent as previously thought. They may move in relation to each other, as well as contribute actively toward lithospheric plate motions – the Plume Model. There is a lively, ongoing debate between the Plate and Plume hypotheses, essentially seeking to determine if mantle flow is merely a passive reaction to lithospheric plate motion (Plate Model), or whether plume activity in part drives this motion (Plume Model). More likely, it is a combination of passive and active mantle plume components that better describe the comprehensive behavior of these important and distinctive landscape forming features.


2013 ◽  
Vol 38 (7) ◽  
pp. 1286-1294 ◽  
Author(s):  
Zong-Xin LI ◽  
Yuan-Quan CHEN ◽  
Qing-Cheng WANG ◽  
Kai-Chang LIU ◽  
Wang-Sheng GAO ◽  
...  

2019 ◽  
Author(s):  
Rudra Mohan Pradhan ◽  
◽  
Karrie A. Weber ◽  
Karrie A. Weber ◽  
Daniel Snow ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


Sign in / Sign up

Export Citation Format

Share Document