Hydrogeophysical coupled inversion in coastal aquifers: the Argentona case

Author(s):  
Andrea Palacios ◽  
Tybaud Goyetche ◽  
Niklas Linde ◽  
Jesús Carrera

<p>Most, if not all, models of real aquifers go through a calibration process to adjust their hydraulic and solute transport parameters in order to bring the simulations outputs closer to the field observations. In coastal aquifers, the datasets are commonly composed of head time series, solute concentrations from water samples, and water and formation electrical conductivity, these last being of particular importance in coastal settings due to their relevance for seawater detection. Argentona is a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona, where a 2-year Cross-Hole Electrical Resistivity Tomography (CHERT) experiment was performed. CHERT provided high resolution electrical resistivity data in depth and allowed the visualization of dynamic aquifer processes. In the present work, we test the calibration of the Argentona SWI model using both the hydrological and the geophysical datasets. To do so, a density-dependent groundwater model was combined with CHERT forward modeling within a parameter calibration framework. In the process we pay attention to the CHERT capacity to recover aquifer salinities, to the coupling of the hydrological and geophysical simulations through petrophysics, to the use of the field specific relations and to the inverse problem parametrization, among other things. Pre-calibration analysis showed the sensitivity of the formation electrical resistivities to the porosities and to the petrophysical parameters, so the inverse problem solves for hydraulic transmissivities, porosities and petrophysical parameters. From the comparison of the preliminary results from the hydrological and the hydrogeophysical calibration, we observe that they point towards a better calibration of model porosities when the electrical resistivity is included in the inverse problem. The results will be compared to other parameter estimation methods, such as laboratory tests, the tidal method and heat tests, also performed at the Argentona site. We will conclude on the added value of the geophysical dataset in the calibration process, the possible improvements and drawbacks of the method.</p>

The electrical resistivities of lithium -6 and lithium of natural isotopic composition have been studied between 4°K and room temperature. In addition, their absolute resistivities have been carefully compared at room temperature. These measurements show that the effect of ionic mass on electrical resistivity agrees with simple theoretical predictions, namely, that the properties of the conduction electrons in lithium do not depend on the mass of the ions, and that the characteristic lattice frequencies for the two pure isotopes are in the inverse ratio of the square roots of their ionic masses. A comparison with the specific heat results of Martin (1959, 1960), where the simple theory is found not to hold, indicates the possibility that anharmonic effects are present which affect the specific heat but not the electrical resistivity.


2021 ◽  
Author(s):  
Liqun Jiang ◽  
Ronglin Sun ◽  
Xing Liang

<p>Protection and management of groundwater resources demand high-resolution distributions of hydraulic parameters (e.g., hydraulic conductivity (K) and specific storage (Ss)) of aquifers. In the past, these parameters were obtained by traditional analytical solutions (e.g., Theis (1935) or Cooper and Jacob (1946)). However, traditional methods assume the aquifer to be homogeneous and yield the equivalent parameter, which are averages over a large volume and are insufficient for predicting groundwater flow and solute transport process (Butler & Liu, 1993). For obtaining the aquifer heterogeneity, some scholars have used kriging (e.g., Illman et al., 2010) and hydraulic tomography (HT) (e.g., Yeh & Liu, 2000; Zhu & Yeh, 2005) to describe the K distribution.</p><p>In this study, the laboratory heterogeneous aquifer sandbox is used to investigate the effect of different hydraulic parameter estimation methods on predicting groundwater flow and solute transport process. Conventional equivalent homogeneous model, kriging and HT are used to characterize the heterogeneity of sandbox aquifer. A number of the steady-state head data are collected from a series of single-hole pumping tests in the lab sandbox, and are then used to estimate the K fields of the sandbox aquifer by the steady-state inverse modeling in HT survey which was conducted using the SimSLE algorithm (Simultaneous SLE, Xiang et al., 2009), a built-in function of the software package of VSAFT2. The 40 K core samples from the sandbox aquifer are collected by the Darcy experiments, and are then used to obtain K fields through kriging which was conducted using the software package of Surfer 13. The role of prior information on improving HT survey is then discussed. The K estimates by different methods are used to predict the process of steady-state groundwater flow and solute transport, and evaluate the merits and demerits of different methods, investigate the effect of aquifer heterogeneity on groundwater flow and solute transport.</p><p>According to lab sandbox experiments results, we concluded that compared with kriging, HT can get higher precision to characterize the aquifer heterogeneity and predict the process of groundwater flow and solute transport. The 40 K fields from the K core samples are used as priori information of HT survey can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.</p>


Sign in / Sign up

Export Citation Format

Share Document