scholarly journals Short-term evolution of submarine canyon head morphologies in the NW Mediterranean: Blanes and Cap de Creus canyons

Author(s):  
Cecilia Cabrera ◽  
Ruth Durán ◽  
Pere Puig ◽  
Jorge Guillén ◽  
Araceli Muñoz ◽  
...  

<p>Submarine canyons are morphological features found along continental margins that play a key role channeling and connecting sediment from continental shelves to the abyssal plains. The current morphological characterization of the Blanes and Cap de Creus canyon heads, located on the Catalan continental margin (NW Mediterranean Sea), has been recently conducted during the CRIMA cruise in September 2020 using high-resolution (4 m grid size) multibeam bathymetry data. These data have been compared with a previous dataset collected in 2004 during the ESPACE project to evaluate the morphological changes during this 16-year interval. Since these canyon heads are located at shallow water depths and at short distances from the shoreline, their short-term evolution is related to the sediment dynamics on the continental shelf.</p><p>A large-scale change in the seafloor morphology was observed in the Blanes canyon head, indicating the prevalence of erosion in the western canyon rim and non-deposition in the eastern rim. In the Cap de Creus canyon head, the excavation of pre-existing erosive structures was also evidenced in the southwestern canyon rim. These changes mainly happen in the area where the shelf is narrower, which coincide with the main zone of dense water advection along the shelf and toward the canyon interior. The different small-scale morphological evolution between both canyon heads seems to be related to the local geological characteristic of the subsurface deposits of the continental shelf. The Blanes canyon head incises a succession of relict (Holocene) sediment bodies that can act as a source of erodible sediments to the canyon, mainly during strong storms. The continental shelf in the vicinity of the Cap de Creus canyon head, however, is characterized by a rocky substratum (Paleozoic) with a limited sediment coverage and numerous erosive features that evidence relative sand starvation. This creates a greater erosive resistance, although the erosive character of strong storms and major dense-shelf water cascading events occurring during the studied time interval is evident. Additionally, small changes in the shelf bedforms indicate that such high-energetic oceanographic processes also modify the fine-scale seafloor morphology.</p><p>These results reveal that both submarine canyon heads are dynamic and sensitive to oceanographic processes that enhance the erosion and transport of sediment from the shelf into the canyon, particularly during energetic storms and dense shelf water cascading events. Nevertheless, their small-scale evolution seems to be closely related to the type of geological substrate of the shelf on which they are developing.</p><p>This study has received funding from the ABRIC (RTI2018-096434-B-I00) and CRIMA (RTI2018-095770-B-I00) Spanish Research Projects, the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 867471 and the Generalitat de Catalunya (2017 SGR-663 and -1588). This work is contributing to the ICM’s ‘Center of Excellence’ Severo Ochoa (CEX2019-000928-S). The authors thank the Secretaría General de Pesca and Tragsa for the 2004 ESPACE Project dataset.</p>

2021 ◽  
Author(s):  
Ruth Durán ◽  
Pere Puig ◽  
Araceli Muñoz ◽  
Claudio Lo Iacono ◽  
Jorge Guillén ◽  
...  

<p>The north-western Mediterranean continental margin is one of the few regions in the world where bottom trawling has been continuously practised since several decades. Among the existing trawling techniques, the one practised on this region is the "otter trawling", which has a strong impact on the seafloor morphology via scraping and ploughing, especially on muddy substrates. High-resolution multibeam bathymetry and backscatter data, side scan sonar images, sediment cores and satellite based Vessel Monitoring System (VMS) data have been integrated to investigate the impact of bottom trawling on the seafloor morphology of the northern Catalan continental shelf (NW Mediterranean). Satellite-based navigation tracks from bottom trawlers operating in the study area during 6 years (2006-2011) reveal the spatial distribution of fishing grounds and the occurrence of an intense trawling effort around the 50-60 m isobaths, since trawling is banned at shallow depths. Backscatter imagery shows a narrow (120-250 m wide) and discontinuous high backscatter facies along this depth range, extending parallel to the coastline for more than 40 km from Portbou to l’Estartit. In the bathymetric data, this high backscatter region also coincides with an abrupt change in the mean seafloor gradient (from 0.8° in the inner shelf to 0.4° in the middle shelf), or locally with a narrow (50-150 m wide) slightly depressed (0.2-0.6 m deep) channeled morphology. Side-scan sonar images display high density of trawl marks generated by fishing gears in this area. Further offshore, scattered narrower trawl hauls are also observed on the middle shelf (60-90 m deep), where they can be traced across several thousands of meters. Sediment cores retrieved from the area of high backscatter and largest trawling intensity display sediment coarsening in the upper layers (0-4 cm) caused by winnowing of finer fractions. These findings demonstrate that chronic stirring, mixing and erosion of surface sediments induced by recurrent trawling persisting over the same fishing grounds can cause long-term morphological and sedimentary changes on the continental shelf seafloor.</p><p>This study has received funding from the ABIDES (Assessment of Bottom-trawling Impacts in the Deep-sea Sediments) Spanish Research Project (CTM2015-65142-R) and the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 867471. Additional funds were provided by the Generalitat de Catalunya Generalitat de Catalunya (2017 SGR-663 and -1588) and by the Spanish Research Project ABRIC (RTI2018-096434-B-I00). This work is contributing to the ICM’s ‘Center of Excellence’ Severo Ochoa (CEX2019-000928-S). The authors wish to thank the Secretaría General de Pesca and Tragsa for the 2004 Espace Project dataset.</p>


2013 ◽  
Vol 10 (6) ◽  
pp. 3493-3505 ◽  
Author(s):  
A. Rumín-Caparrós ◽  
A. Sanchez-Vidal ◽  
A. Calafat ◽  
M. Canals ◽  
J. Martín ◽  
...  

Abstract. Particle fluxes (including major components and grain size), and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration) were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea) during two consecutive winter-spring periods (2009–2010 and 2010–2011). The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge) have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009–2010 and 2010–2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m−2) in winter 2009–2010 that triggered a pronounced sea surface cooling compared to winter 2010–2011 (1.6 × 103 W m−2 lower). As a consequence, a large volume of dense shelf water formed in winter 2009–2010, which cascaded at high speed (up to ∼1 m s−1) down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010–2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m−2 d−1) recorded in winter-spring 2009–2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m−2 d−1) under the quieter conditions of winter 2010–2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter and opal contents relates to seasonally controlled inputs associated with the plankton spring bloom during March and April of both years.


2020 ◽  
Vol 161 ◽  
pp. 111744 ◽  
Author(s):  
Carlos Dominguez-Carrió ◽  
Anna Sanchez-Vidal ◽  
Claude Estournel ◽  
Guillem Corbera ◽  
Joan Lluís Riera ◽  
...  

2013 ◽  
Vol 118 ◽  
pp. 28-46 ◽  
Author(s):  
Ruth Durán ◽  
Miquel Canals ◽  
Galderic Lastras ◽  
Aaron Micallef ◽  
David Amblas ◽  
...  

Author(s):  
Saroj KARKI ◽  
Yuji HASEGAWA ◽  
Masakazu HASHIMOTO ◽  
Hajime NAKAGAWA ◽  
Kenji KAWAIKE

Nephron ◽  
1991 ◽  
Vol 58 (1) ◽  
pp. 13-16 ◽  
Author(s):  
S. Camara ◽  
J.P. de la Cruz ◽  
M.A. Frutos ◽  
P. Sanchez ◽  
Lopez de Novales ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.


Author(s):  
Marc Baeta ◽  
Claudia Rubio ◽  
Françoise Breton

Abstract There is an important small-scale fishery using mechanized dredges and targeting clams (mainly wedge clam Donax trunculus and striped venus clam Chamelea gallina) along the Catalan coast (NW Mediterranean Sea). This study evaluated for the first time the discards and impact of mechanized clam dredging on the Catalan coast. To this end, three surveys were performed on board standard clam vessels (September and November 2016 and January 2017). Surveys were conducted in the three main clam fishing areas (Rosas Bay, South Barcelona and Ebro Delta). The composition of discards and the impact caused to discarded species was assessed using a three-level scale (undamaged; minor or partial damage; and lethal damage). Our study revealed that a large proportion of the catch (between 67–82% weight) is discarded. Even though about 63% of the discarded species were undamaged, 11% showed minor or partial damage and 26% lethal damage. Infaunal and epifaunal species with soft-body or fragile shells were the most impacted by the fishing activity (e.g. the sea urchin Echinocardium mediterraneum (~89%) and the bivalve Ensis minor (~74%)). Our results showed different levels of impact by target species and fishing area.


Sign in / Sign up

Export Citation Format

Share Document