scholarly journals Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm Prediction by Using WRF-3DVAR

2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.

2020 ◽  
Author(s):  
Jiyang Tian ◽  
Ronghua Liu ◽  
Liuqian Ding ◽  
Liang Guo ◽  
Bingyu Zhang

Abstract. As an effective technique to improve the rainfall forecast, data assimilation plays an important role in meteorology and hydrology. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the Numerical Weather Prediction (NWP) systems. The Weather Research and Forecasting (WRF) model is applied to simulate three typhoon storm events in southeast coast of China. Radar data from Changle Doppler radar station are assimilated with three-dimensional variational data assimilation (3-DVar) model. Nine assimilation modes are designed by three kinds of radar data (radar reflectivity, radial velocity, radar reflectivity and radial velocity) and three assimilation time intervals (1 h, 3 h and 6 h). The rainfall simulations in a medium-scale catchment, Meixi, are evaluated by three indices including relative error (RE), critical success index (CSI) and root mean square error (RMSE). Assimilating radial velocity with time interval of 1 h can significantly improve the rainfall simulations and outperforms the other modes for all the three storm events. Shortening the assimilation time interval can improve the rainfall simulations in most cases, while assimilating radar reflectivity always leads to worse simulation as the time interval shortens. The rainfall simulation can be improved by data assimilation as a whole, especially for the heavy rainfall with strong convection. The findings provide references for improving the typhoon rainfall forecasts in catchment scale and have great significance on typhoon rainstorm warning.


2018 ◽  
Vol 25 (4) ◽  
pp. 747-764 ◽  
Author(s):  
Thomas Gastaldo ◽  
Virginia Poli ◽  
Chiara Marsigli ◽  
Pier Paolo Alberoni ◽  
Tiziana Paccagnella

Abstract. Quantitative precipitation forecast (QPF) is still a challenge for numerical weather prediction (NWP), despite the continuous improvement of models and data assimilation systems. In this regard, the assimilation of radar reflectivity volumes should be beneficial, since the accuracy of analysis is the element that most affects short-term QPFs. Up to now, few attempts have been made to assimilate these observations in an operational set-up, due to the large amount of computational resources needed and due to several open issues, like the rise of imbalances in the analyses and the estimation of the observational error. In this work, we evaluate the impact of the assimilation of radar reflectivity volumes employing a local ensemble transform Kalman filter (LETKF), implemented for the convection-permitting model of the COnsortium for Small-scale MOdelling (COSMO). A 4-day test case on February 2017 is considered and the verification of QPFs is performed using the fractions skill score (FSS) and the SAL technique, an object-based method which allows one to decompose the error in precipitation fields in terms of structure (S), amplitude (A) and location (L). Results obtained assimilating both conventional data and radar reflectivity volumes are compared to those of the operational system of the Hydro-Meteo-Climate Service of the Emilia-Romagna Region (Arpae-SIMC), in which only conventional observations are employed and latent heat nudging (LHN) is applied using surface rainfall intensity (SRI) estimated from the Italian radar network data. The impact of assimilating reflectivity volumes using LETKF in combination or not with LHN is assessed. Furthermore, some sensitivity tests are performed to evaluate the effects of the length of the assimilation window and of the reflectivity observational error (roe). Moreover, balance issues are assessed in terms of kinetic energy spectra and providing some examples of how these affect prognostic fields. Results show that the assimilation of reflectivity volumes has a positive impact on QPF accuracy in the first few hours of forecast, both when it is combined with LHN or not. The improvement is further slightly enhanced when only observations collected close to the analysis time are assimilated, while the shortening of cycle length worsens QPF accuracy. Finally, the employment of too small a value of roe introduces imbalances into the analyses, resulting in a severe degradation of forecast accuracy, especially when very short assimilation cycles are used.


2018 ◽  
Author(s):  
Thomas Gastaldo ◽  
Virginia Poli ◽  
Chiara Marsigli ◽  
Pier Paolo Alberoni ◽  
Tiziana Paccagnella

Abstract. Quantitative precipitation forecast (QPF) is still a challenge for numerical weather prediction (NWP), despite the continuous improvement of models and data assimilation systems. In this regard, the assimilation of radar reflectivity volumes should be beneficial, since the accuracy of analysis is the element that most affects short-term QPFs. Up to now, very fewattempts have been made to assimilate these observations in an operational set-up, due to the large amount of computational resources needed and to several open issues, like the arise of imbalances in the analyses and the estimation of the observational error. In this work, it is evaluated the impact of the assimilation of radar reflectivity volumes employing a Local Ensemble Transform Kalman Filter (LETKF), implemented for the convection permitting model of the COnsortium for Small-scale Modelling (COSMO). A 4 days test case on February 2017 is considered and QPF is evaluated in terms of the SAL technique, an object-based method which allows to evaluate structure, amplitude and location of precipitation fields Results obtained assimilating radar reflectivity volumes are compared to those of the operational system of the Hydro-Meteo-Climate Service of the Emilia-Romagna region (Arpae-SIMC), in which only conventional data are employed. Furthermore, some sensitivity tests are performed to evaluate the impact of the additive inflation, of the lenght of assimilation windows and of the reflectivity observational error. Finally, balance issues are assessed in terms of kinetic energy spectra and providing some examples of how these affect prognostic fields.


2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2017 ◽  
Vol 14 ◽  
pp. 187-194 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Claudio Transerici ◽  
Stefano Dietrich

Abstract. This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (> 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day−1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1–2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.


2016 ◽  
Author(s):  
R. J. Haarsma ◽  
M. Roberts ◽  
P. L. Vidale ◽  
C. A. Senior ◽  
A. Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest the possibility for significant changes in both large-scale aspects of circulation, as well as improvements in small-scale processes and extremes. However, such high resolution global simulations at climate time scales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centers and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other MIPs. Increases in High Performance Computing (HPC) resources, as well as the revised experimental design for CMIP6, now enables a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility to extend to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulation. HighResMIP thereby focuses on one of the CMIP6 broad questions: “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2016 ◽  
Vol 9 (11) ◽  
pp. 4185-4208 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Catherine A. Senior ◽  
Alessio Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2016 ◽  
Vol 38 (2) ◽  
pp. 1077
Author(s):  
Luana Ribeiro Macedo ◽  
João Luiz Martins Basso ◽  
Yoshihiro Yamasaki

The WRF mesoscale system 4DVAR data assimilation technique have been used with the purpose of evaluating the impact of the meteorological data assimilation on the numeric time prognosis over the Rio Grande do Sul state. It has been done utilizing the surface and altitude data. The consistency analysis has been done evaluating the numerical prognosis exploring the differences between the analysis with and without data assimilation. The produced prognosis results have been compared spatially using the TRMM satellite data as well as the Canguçu radar reflectivity data. The accumulated rainfall has been validated and compared spatially with the TRMM data for the time period of 12 hours comprehended between October 29th and 30th of 2014. It was possible to realize that as well as the WRF, the WRFVAR overestimated the rainfall values. The radar reflectivity field without data assimilation for October 30th at 06:00UTC detected most accurately the reflectivity centers over the state. On the other hand this field with data assimilation did not present good skill. The temperature field analyses reveal that the 4DVAR assimilation system contributes, one way or another, presenting a little improvement for some points compared to the real data.


2015 ◽  
Vol 16 (2) ◽  
pp. 811-829 ◽  
Author(s):  
Liao-Fan Lin ◽  
Ardeshir M. Ebtehaj ◽  
Rafael L. Bras ◽  
Alejandro N. Flores ◽  
Jingfeng Wang

Abstract The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.


2017 ◽  
Vol 32 (2) ◽  
pp. 595-608
Author(s):  
Tong Zhu ◽  
Sid Ahmed Boukabara ◽  
Kevin Garrett

Abstract The impacts of both satellite data assimilation (DA) and lateral boundary conditions (LBCs) on the Hurricane Weather Research and Forecasting (HWRF) Model forecasts of Hurricane Sandy 2012 were assessed. To investigate the impact of satellite DA, experiments were run with and without satellite data assimilated, as well as with all satellite data but excluding Geostationary Operational Environmental Satellite (GOES) Sounder data. To gauge the LBC impact, these experiments were also run with a variety of outer domain (D-1) sizes. The inclusion of satellite DA resulted in analysis fields that better characterized the tropical storm structures including the warm core anomaly and wavenumber-1 asymmetry near the eyewall, and also served to reduce the forecast track errors for Hurricane Sandy. The specific impact of assimilating the GOES Sounder data showed positive impacts on forecasts of the storm minimum sea level pressure. Increasing the D-1 size resulted in increases in the day 4/5 forecast track errors when verified against the best track and the Global Forecast System (GFS) forecast, which dominated any benefits from assimilating an increased volume of satellite observations due to the larger domain. It was found that the LBCs with realistic environmental flow information could provide better constraints on smaller domain forecasts. This study demonstrated that satellite DA can improve the analysis of a hurricane asymmetry, especially in a shear environment, and then lead to a better track forecast, and also emphasized the importance of the LBCs and the challenges associated with the evaluation of satellite data impacts on regional model prediction.


Sign in / Sign up

Export Citation Format

Share Document