Persistent Homology, Regimes and Climate Data

Author(s):  
Kristian Strommen ◽  
Nina Otter ◽  
Matthew Chantry ◽  
Joshua Dorrington

<p>The concept of weather or climate 'regimes' have been studied since the 70s, to a large extent because of the possibility they offer of truncating complicated dynamics to vastly simpler, Markovian, dynamics. Despite their attraction, detecting them in data is often problematic, and a unified definition remains nebulous. We argue that the crucial common feature across different dynamical systems with regimes is the non-trivial topology of the underlying phase space. Such non-trivial topology can be detected in a robust and explicit manner using persistent homology, a powerful new tool to compute topological invariants in arbitrary datasets. We show some state of the art examples of the application of persistent homology to various non-linear dynamical systems, including real-world climate data, and show how these techniques can shed light on questions such as how many regimes there really are in e.g. the Euro-Atlantic sector. Future directions are also discussed.</p>

2016 ◽  
Vol 224 (2) ◽  
pp. 62-70 ◽  
Author(s):  
Thomas Straube

Abstract. Psychotherapy is an effective treatment for most mental disorders, including anxiety disorders. Successful psychotherapy implies new learning experiences and therefore neural alterations. With the increasing availability of functional neuroimaging methods, it has become possible to investigate psychotherapeutically induced neuronal plasticity across the whole brain in controlled studies. However, the detectable effects strongly depend on neuroscientific methods, experimental paradigms, analytical strategies, and sample characteristics. This article summarizes the state of the art, discusses current theoretical and methodological issues, and suggests future directions of the research on the neurobiology of psychotherapy in anxiety disorders.


2016 ◽  
Vol 17 (13) ◽  
pp. 1455-1470 ◽  
Author(s):  
Tomas Majtan ◽  
Angel L. Pey ◽  
June Ereño-Orbea ◽  
Luis Alfonso Martínez-Cruz ◽  
Jan P. Kraus

2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Author(s):  
Alvaro Gomez-Lopez ◽  
Satyannarayana Panchireddy ◽  
Bruno Grignard ◽  
Inigo Calvo ◽  
Christine Jerome ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document