Diffraction imaging and depth-velocity inversion with 3D P-Cable seismic data

Author(s):  
Alexander Bauer ◽  
Benjamin Schwarz ◽  
Dirk Gajewski

<p>Most established methods for the estimation of subsurface velocity models rely on the measurements of reflected or diving waves and therefore require data with sufficiently large source-receiver offsets. For seismic data that lacks these offsets, such as vintage data, low-fold academic data or near zero-offset P-Cable data, these methods fail. Building on recent studies, we apply a workflow that exploits the diffracted wavefield for depth-velocity-model building. This workflow consists of three principal steps: (1) revealing the diffracted wavefield by modeling and adaptively subtracting reflections from the raw data, (2) characterizing the diffractions with physically meaningful wavefront attributes, (3) estimating depth-velocity models with wavefront tomography. We propose a hybrid 2D/3D approach, in which we apply the well-established and automated 2D workflow to numerous inlines of a high-resolution 3D P-Cable dataset acquired near Ritter Island, a small volcanic island located north-east of New Guinea known for a catastrophic flank collapse in 1888. We use the obtained set of parallel 2D velocity models to interpolate a 3D velocity model for the whole data cube, thus overcoming possible issues such as varying data quality in inline and crossline direction and the high computational cost of 3D data analysis. Even though the 2D workflow may suffer from out-of-plane effects, we obtain a smooth 3D velocity model that is consistent with the data.</p>

2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Hani Alzahrani ◽  
Jeffrey Shragge

Data-driven artificial neural networks (ANNs) offer a number of advantages over conventional deterministic methods in a wide range of geophysical problems. For seismic velocity model building, judiciously trained ANNs offer the possibility of estimating high-resolution subsurface velocity models. However, a significant challenge of ANNs is training generalization, which is the ability of an ANN to apply the learning from the training process to test data not previously encountered. In the context of velocity model building, this means learning the relationship between velocity models and the corresponding seismic data from a set of training data, and then using acquired seismic data to accurately estimate unknown velocity models. We ask the following question: what type of velocity model structures need be included in the training process so that the trained ANN can invert seismic data from a different (hypothetical) geological setting? To address this question, we create four sets of training models: geologically inspired and purely geometrical, both with and without background velocity gradients. We find that using geologically inspired training data produce models with well-delineated layer interfaces and fewer intra-layer velocity variations. The absence of a certain geological structure in training models, though, hinders the ANN's ability to recover it in the testing data. We use purely geometric training models consisting of square blocks of varying size to demonstrate the ability of ANNs to recover reasonable approximations of flat, dipping, and curved interfaces. However, the predicted models suffer from intra-layer velocity variations and non-physical artifacts. Overall, the results successfully demonstrate the use of ANNs in recovering accurate velocity model estimates, and highlight the possibility of using such an approach for the generalized seismic velocity inversion problem.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. R583-R599 ◽  
Author(s):  
Fangshu Yang ◽  
Jianwei Ma

Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.


2020 ◽  
Author(s):  
Alexander Bauer ◽  
Benjamin Schwarz ◽  
Richard Delf ◽  
Dirk Gajewski

<p>In the recent years, the diffracted wavefield has gained increasing attention in the field of applied seismics. While classical seismic imaging and inversion schemes mainly focus on high-amplitude reflected measurements, the faint and often masked diffracted wavefield is neglected or even treated as noise. In order to be able to extract depth-velocity models from seismic reflection data, sufficiently large source-receiver offsets are needed. However, the acquisition of such multi-channel seismic data is expensive and often only feasible for the hydrocarbon industry, while academia has to cope with low-fold or zero-offset data. The diffracted wavefield is the key for extracting depth velocities from such data, as the moveout of diffractions – in contrast to reflections – can be measured in the zero-offset domain. Recently, we have demonstrated on multi-channel, single-channel and passive seismic data that by means of wavefront tomography depth-velocity models can be retrieved solely based on diffractions or passive seismic events along with the localizations of these scatterers. The input for wavefront tomography are so-called wavefront attributes, which can be extracted from the data in an unsupervised fashion by means of coherence analysis. In order to obtain the required diffraction-only data, we use a recently proposed scheme that adaptively subtracts the high-amplitude reflected wavefield from the raw data. Due to their most common acquisition geometry, most ground-penetrating-radar (GPR) data inherently lack offsets. In addition, GPR data generally contain a rich diffracted wavefield, which in turn contains information about sought-after structures, as diffractions are caused by small-scale heterogeneities such as faults, tips or edges. In this work, we show an application of the suggested workflow – coherence analysis, diffraction separation and diffraction wavefront tomography – to GPR data acquired at a glacier, resulting in a depth-velocity model and the localizations of the scatterers, both obtained in a fully unsupervised fashion. While the resulting  velocity model may be used for depth migration of the raw data, the localizations of the scatterers may in addition provide important information on the inner structure of the glacier in order to, for instance, localize water intrusions or fractures.</p>


2020 ◽  
Vol 10 (12) ◽  
pp. 4391
Author(s):  
Yasir Bashir ◽  
Nordiana Mohd Muztaza ◽  
Seyed Yaser Moussavi Alashloo ◽  
Syed Haroon Ali ◽  
Deva Prasad Ghosh

Fractured imaging is an important target for oil and gas exploration, as these images are heterogeneous and have contain low-impedance contrast, which indicate the complexity in a geological structure. These small-scale discontinuities, such as fractures and faults, present themselves in seismic data in the form of diffracted waves. Generally, seismic data contain both reflected and diffracted events because of the physical phenomena in the subsurface and due to the recording system. Seismic diffractions are produced once the acoustic impedance contrast appears, including faults, fractures, channels, rough edges of structures, and karst sections. In this study, a double square root (DSR) equation is used for modeling of the diffraction hyperbola with different velocities and depths of point diffraction to elaborate the diffraction hyperbolic pattern. Further, we study the diffraction separation methods and the effects of the velocity analysis methods (semblance vs. hybrid travel time) for velocity model building for imaging. As a proof of concept, we apply our research work on a steep dipping fault model, which demonstrates the possibility of separating seismic diffractions using dip frequency filtering (DFF) in the frequency–wavenumber (F-K) domain. The imaging is performed using two different velocity models, namely the semblance and hybrid travel time (HTT) analysis methods. The HTT method provides the optimum results for imaging of complex structures and imaging below shadow zones.


2020 ◽  
Author(s):  
Jonas Preine ◽  
Benjamin Schwarz ◽  
Alexander Bauer ◽  
Dirk Gajewski ◽  
Christian Hübscher

<p>The active seismic method is a standard tool for studying the Earth’s lithosphere. On scales from centimetres to kilometres, academic research is generally interested in highly complex geological targets such as volcanic edifices, crustal faults or salt environments. In order to properly image these structures, large and expensive multichannel acquisitions with a high offset-to-target depth ratio are required. In practice, however, these are often hardly affordable for academic institutions, with the result that reflections often only poorly illuminate laterally variable structures, which in turn compromises imaging and interpretation. As in common practice, most of the processing and interpretational steps are tailored to the reflected wavefield, faint diffracted contributions are typically considered as an unwanted by-product.</p><p>In recent works, however, it has been shown that diffractions possess unique properties which bear the potential to overcome the aforementioned limitations. Wave diffraction occurs at geodynamically important features like faults, pinch-outs, erosional surfaces or other small-scale scattering objects and encodes sub-wavelength information on the scattering geometry. Since diffracted waves do not obey Snell’s Law, they provide superior illumination compared to reflected waves. Moreover, due to their passive-source like radiation, they encode their full multichannel response in prominent data subsets like the zero-offset section. In order to explore what can be learned from the faint diffracted wavefield, we use academic seismic data from the Santorini-Amorgos Tectonic Zone (SATZ) in the Southern Aegean Sea. This is an area well known for its local complexity, indicated by the occurrence of extended fault systems and volcanic edifices as well as a complex acoustic basement. As the available seismic data in this region were acquired using a relatively short streamer, the SATZ represents a classical example for the need of innovative methods for seismic processing and interpretation.</p><p>By means of a robust and computationally efficient scheme for the extraction of diffractions that models and adaptively subtracts the reflected wavefield from the data, we reveal a rich diffracted wavefield from zero-offset data. On the one hand, we use the diffraction-only sections for analysing the small-scale structural complexity and demonstrate that the geological interpretation can benefit from these observations. On the other hand, we use the diffractions to estimate insightful wavefront attributes in the zero-offset domain. Based on these attributes, we perform wavefront tomography to obtain depth-velocity models. Compared to depth-velocity models derived from the reflected contributions, the diffraction-based velocity model fits the data significantly better. After refining this velocity model, we perform prestack depth migration and obtain highly valuable depth converted seismic sections. Concluding our results, we strongly encourage the incorporation of diffractions in standard processing and interpretational schemes.</p>


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. P47-P56 ◽  
Author(s):  
Jesse Lomask ◽  
Robert G. Clapp ◽  
Biondo Biondi

Delineating salt boundaries is a necessary step in the velocity-model building process. The salt-delineation problem can be thought of as an image-segmentation problem. Normalized cuts image segmentation (NCIS) finds the cut (or cuts) that result in an image being broken into portions which have dissimilar, by some measure, characteristics. We apply a modified version of the NCIS method to partition seismic images along salt boundaries. NCIS can track boundaries that are not continuous, where conventional horizon-tracking algorithms may fail, by calculating a weight connecting each pixel in the image to every other pixel within a local neighborhood. The weights are determined using problem-dependent combinations of attributes, the most important being instantanteous amplitude and dip. The weights for the entire image are used to segment the image via an eigenvector calculation. The weight matrices for 3D seismic data cubes can be quite large and computationally expensive. By imposing bounds and by distributing the algorithm on a parallel cluster, we significantly increase efficiency. This method is demonstrated to be effective on a 3D field seismic data cube.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. R65-R73 ◽  
Author(s):  
Alexander Bauer ◽  
Benjamin Schwarz ◽  
Dirk Gajewski

Wavefront tomography is known to be an efficient and stable approach for velocity inversion that does not require accurate starting models and does not interact directly with the prestack data. Instead, the original data are transformed to physically meaningful wavefront attribute fields. These can be automatically estimated using local-coherence analysis by means of the common-reflection-surface (CRS) stack, which has been shown to be a powerful tool for data analysis and enhancement. In addition, the zero-offset wavefront attributes acquired during the CRS stack can be used for sophisticated subsequent processes such as wavefield characterization and separation. Whereas in previous works, wavefront tomography has been applied mainly to reflection data, resulting in smooth velocity models suitable for migration of targets with moderately complex overburden, we have emphasized using the diffracted contributions in the data for velocity inversion. By means of simple synthetic examples, we reveal the potential of diffractions for velocity inversion. On industrial field data, we suggest a joint inversion based on reflected and diffracted contributions of the measured wavefield, which confirms the general finding that diffraction-based wavefront tomography can help to increase the resolution of the velocity models. Concluding our work, we compare the quality of a reverse time migrated result using the estimated velocity model with the result based on the inversion of reflections, which reveals an improved imaging potential for a complex salt geometry.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. U39-U47 ◽  
Author(s):  
Hui Liu ◽  
Hua-wei Zhou ◽  
Wenge Liu ◽  
Peiming Li ◽  
Zhihui Zou

First-arrival traveltime tomography is a popular approach to building the near-surface velocity models for oil and gas exploration, mining, geoengineering, and environmental studies. However, the presence of velocity-inversion interfaces (VIIs), across which the overlying velocity is higher than the underlying velocity, might corrupt the tomographic solutions. This is because most first-arrival raypaths will not traverse along any VII, such as the top of a low-velocity zone. We have examined the impact of VIIs on first-arrival tomographic velocity model building of the near surface using a synthetic near-surface velocity model. This examination confirms the severe impact of VIIs on first-arrival tomography. When the source-to-receiver offset is greater than the lateral extent of the VIIs, good near-surface velocity models can still be established using a multiscale deformable-layer tomography (DLT), which uses a layer-based model parameterization and a multiscale scheme as regularization. Compared with the results from a commercial grid-based tomography, the DLT delivers much better near-surface statics solutions and less error in the images of deep reflectors.


Sign in / Sign up

Export Citation Format

Share Document