Using Rapid Repeat SAR Interferometry to improve Hydrodynamic Models of flood propagation in Coastal Wetlands 

Author(s):  
Sergio Fagherazzi ◽  
Xiaohe Zhang ◽  
Cathleen Jones ◽  
Talib Oliver-Cabrera ◽  
Marc Simard

<p>The propagation of tides and riverine floodwater in coastal wetlands is controlled by subtle topographic differences and a thick vegetation canopy. A precise quantification of fluxes of water, sediments and nutrients is crucial to determine the resilience and vulnerability of coastal wetlands to sea level rise. High-resolution numerical models have been used in recent years to simulate fluxes across wetlands. However, these models are based on sparse field data that can lead to unreliable results. Here, we utilize high spatial-resolution, rapid repeat interferometric data from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to provide a synoptic measurement of sub-canopy water-level change resulting from tide propagation into wetlands.  These data are used to constrain crucial model parameters and improve the performance and realism of simulations of the Wax Lake wetlands in coastal Louisiana (USA). A sensitivity analysis shows that the boundary condition of river discharge should be calibrated first, followed by iterative correction of terrain elevation. The calibration of bed friction becomes important only with the boundary and topography calibrated. With the model parameters calibrated, the overall Nash-Sutcliffe model efficiency for water-level change increases from 0.15 to 0.53 with the RMSE reduced by 26%. More importantly, constraining model simulations with UAVSAR observations drives iterative modifications of the original Digital Terrain Model. In areas with dense wetland grasses, the LiDAR signal is unable to reach the soil surface, but the L-band UAVSAR instrument detects changes in water levels that can be used to infer the true ground elevation. The high spatial resolution and repeat-acquisition frequency (minutes to hours) observations provided by UAVSAR represent a groundbreaking opportunity for a deeper understanding of the complex hydrodynamics of coastal wetlands.</p>

Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. WA49-WA59 ◽  
Author(s):  
D. R. Pool

Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than [Formula: see text], when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Andrew D. Gronewold ◽  
Anne. H. Clites ◽  
Jacob Bruxer ◽  
Keith W. Kompoltowicz ◽  
Joeseph P. Smith ◽  
...  

The recent 2-year surge represents one of the most rapid rates of water level change on the Great Lakes in recorded history and marks the end of an unprecedented period of low water levels.


2020 ◽  
Vol 12 (15) ◽  
pp. 2351
Author(s):  
Tien-Hao Liao ◽  
Marc Simard ◽  
Michael Denbina ◽  
Michael P. Lamb

Coastal wetlands are productive ecosystems driven by highly dynamic hydrological processes such as tides and river discharge, which operate at daily to seasonal timescales, respectively. The scientific community has been calling for landscape-scale measurements of hydrological variables that could help understand the flow of water and transport of sediment across coastal wetlands. While in situ water level gauge data have enabled significant advances, they are limited in coverage and largely unavailable in many parts of the world. In preparation for the NISAR mission, we investigate the use of spaceborne Interferometric Synthetic Aperture Radar (InSAR) observations of phase and coherence at L-band for landscape-scale monitoring of water level change and vegetation cover in coastal wetlands across seasons. We use L-band SAR images acquired by ALOS/PALSAR from 2007 to 2011 to study the impact of seasonal changes in vegetation cover on InSAR sensitivity to water level change in the wetlands of the Atchafalaya basin located in coastal Louisiana, USA. Seasonal variations are observed in the interferometric coherence ( γ ) time-series over wetlands, with higher coherence during the winter and lower coherence during the summer. We show with InSAR time-series that coherence is inversely correlated with Normalized Difference Vegetation Index (NDVI). Our analysis of polarimetric scattering mechanisms demonstrates that double-bounce is the dominant mechanism in swamps while its weakness in marshes hinders estimation of water level changes. In swamps, water level change maps derived from InSAR are highly correlated (r2 = 0.83) with in situ data from the Coastwide Reference Monitoring System (CRMS). From October to December, we observed that the water level may be below wetland elevation and thus not inundating wetlands significantly. Our analysis shows that water level can only be retrieved when both images used for InSAR are acquired when wetlands are inundated. The L-band derived-maps of water level change show large scale gradients originating from the Gulf Intracoastal Waterway rather than the main delta trunk channel, confirming its significant role as a source of hydrologic connectivity across these coastal wetlands. These results indicate that NISAR, with its InSAR observations every 12 days, will provide the measurements necessary to reveal large scale hydrodynamic processes that occur in swamps across seasons.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250880
Author(s):  
Ruirui Yang ◽  
Junyu Dong ◽  
Changchao Li ◽  
Lifei Wang ◽  
Quan Quan ◽  
...  

Wetlands are vulnerable to plant invasions and the decomposition of invasive plant litter could make impacts on the ecosystem services of wetlands including nutrient cycle and carbon sequestration. However, few studies have explored the effects of nutrient enrichment and water level change on the decomposition of invasive plant litter. In this study, we conducted a control experiment using the litterbag method to compare the decomposition rates and nutrient release in the litter of an invasive plant Alternanthera philoxeroides in three water levels and two nutrient enrichment treatments. This study found that the water level change and nutrient enrichment showed significant effects on the litter decomposition and nutrient dynamic of A. philoxeroides. The increase of water level significantly reduced the decomposition rate and nutrient release of litter in the nutrient control treatment, whereas no clear relationship was observed in the nutrient enrichment treatment, indicating that the effect of water level change on litter decomposition might be affected by nutrient enrichment. At the late stage of decomposition, the increase of phosphorus (P) concentration and the decrease of the ratio of carbon to P suggested that the decomposition of invasive plant litter was limited by P. Our results suggest that controlling P enrichment in water bodies is essential for the management of invasive plant and carbon sequestration of wetlands. In addition, the new index we proposed could provide a basis for quantifying the impact of invasive plant litter decomposition on carbon cycle in wetlands.


2003 ◽  
Vol 30 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
Chi-Yuen Wang ◽  
Douglas S. Dreger ◽  
Chung-Ho Wang ◽  
Daniel Mayeri ◽  
James G. Berryman

Sign in / Sign up

Export Citation Format

Share Document