Thermochronology as a key to deciphering controls on landscape evolution in northern Victoria Land (Transantarctic Mountains) 

Author(s):  
Daniela Roehnert ◽  
Frank Lisker ◽  
Maria Laura Balestrieri ◽  
Luca Grewe ◽  
Evandro Balbi ◽  
...  

<p>Northern Victoria Land constitutes the Pacific terminus of the Transantarctic Mountains (TAM) on the western shoulder of the Cenozoic West Antarctic Rift System. It is characterised by a distinct morphological transition from an elevated peneplain that dominates throughout most of the TAM to a strongly undulating relief with prominent narrow crests and alpine peaks. This contrast is associated with a lithological change from high-grade metamorphics and granitoids to low-grade metasedimentary rocks that contain only few scattered igneous bodies.</p><p>New high-resolution thermochronological data (fission-track and (U-Th-Sm)/He) from more than 60 locations in the Southern Cross Mountains and Mountaineer Range of northern Victoria Land provide the basis for studying regional exhumation and uplift with particular focus on the establishment of landscape contrasts. In an integrated approach, differences in topography are examined with respect to regional and local controls including tectonics, lithology and climate to identify differential trends and quantify the morphological evolution of the TAM and West Antarctic Rift System.</p><p> </p><p>Two coastal profiles covering 2 to 3 km in elevation reveal apatite fission track ages from 23 to 45 Ma with mean track lengths of 13.3 – 14.7 μm. Corresponding (U-Th-Sm)/He apatite and zircon data range between 19 – 32 Ma and 24 – 27 Ma, respectively. The dates show distinctive spatial trends of increasing ages from north to south and at greater distance to the coast whereby younger cooling ages correlate with stronger terrain segmentation and higher topographic relief.</p><p>Thermal history modelling of the combined data indicates that accelerated cooling commencing at 35 Ma proceeded at progressively higher rates reaching >25°C/Ma in late stages. This cooling episode continued until at least 20 Ma and refers to exhumation from burial depths of more than 5 km, clearly exceeding the calculated overburden on adjacent crustal blocks to the south. Although rapid upper lithospheric cooling is a generic feature of northern Victoria Land, the current data demonstrates that Cenozoic exhumation dynamics were highly differential. Understanding these patterns requires thorough balancing of structural against isostatic factors, lithological against climate parameters and focussed local incision against large-scale denudation and levelling processes.</p>

Tectonics ◽  
2008 ◽  
Vol 27 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Fabrizio Storti ◽  
Maria Laura Balestrieri ◽  
Fabrizio Balsamo ◽  
Federico Rossetti

2010 ◽  
Vol 22 (5) ◽  
pp. 513-521 ◽  
Author(s):  
Adam P. Martin ◽  
Alan F. Cooper

AbstractA hawaiite dyke dated at 3.88 ± 0.05 Ma from the Mount Morning eruptive centre intrudes a diamictite deposit at Gandalf Ridge in the southern Ross Sea. The dyke has been dextrally offset up to 6 m horizontally by faults interpreted as the onshore continuation of the West Antarctic rift system (WARS) fault array. Felsic dykes emplaced during the Miocene are also present at Gandalf Ridge. The offset of the Miocene dykes is equivalent to the offset on the hawaiite dyke, suggesting that at this locality movement on faults within WARS has been restricted to a period more recent than c. 3.88 Ma. Over this period the minimum average rate of movement on these faults within WARS is 0.0015 mm yr-1.


2021 ◽  
Vol 83 (8) ◽  
Author(s):  
J. L. Smellie ◽  
K. S. Panter

AbstractNeogene volcanic centres are uncommon in the Transantarctic Mountains but at least three basaltic examples occur within 300 km of South Pole, above 2200 m asl and inland of the margin of the West Antarctic Rift System. They are the southernmost volcanoes on Earth and have yielded Early—mid Miocene isotopic ages. Two of the centres, at Mt Early and Sheridan Bluff, have been examined. The centre at Mt Early is unequivocally glaciovolcanic. It formed a tall monogenetic volcanic edifice at least 1 km high and > 1.5 km in diameter. It erupted under significantly thicker-than-modern ice, which was probably a fast-moving ice stream at the eruptive site and resulted in a distinctive constructive architecture and lithofacies. It is the first described example of a glaciovolcano erupted beneath an ice stream. The characteristics of the second centre at Sheridan Bluff indicate that it was also a monogenetic volcano but with a shield-like profile, originally c. 6 km in basal diameter but just c. 400 m high. It probably erupted in a substantial pluvial lake in an ice-poor or ice-free environment. The strongly contrasting eruptive settings now identified by the volcanic sequences at both centres examined testify to a highly dynamic Antarctic Ice Sheet during the Early—mid Miocene.


2021 ◽  
pp. M55-2019-2 ◽  
Author(s):  
Kurt S. Panter ◽  
Jenna Reindel ◽  
John L. Smellie

AbstractThis study discusses the petrological and geochemical features of two monogenetic Miocene volcanoes, Mount Early and Sheridan Bluff, which are the above-ice expressions of Earth's southernmost volcanic field located at c. 87° S on the East Antarctic Craton. Their geochemistry is compared to basalts from the West Antarctic Rift System to test affiliation and resolve mantle sources and cause of melting beneath East Antarctica. Basaltic lavas and dykes are olivine-phyric and comprise alkaline (hawaiite and mugearite) and subalkaline (tholeiite) types. Trace element abundances and ratios (e.g. La/Yb, Nb/Y, Zr/Y) of alkaline compositions resemble basalts from the West Antarctic rift and ocean islands (OIB), while tholeiites are relatively depleted and approach the concentrations levels of enriched mid-ocean ridge basalt (E-MORB). The magmas evolved by fractional crystallization with contamination by crust; however, neither process can adequately explain the contemporaneous eruption of hawaiite and tholeiite at Sheridan Bluff. Our preferred scenario is that primary magmas of each type were produced by different degrees of partial melting from a compositionally similar mantle source. The nearly simultaneous generation of lower degrees of melting to produce alkaline types and higher degrees of melting forming tholeiite was most likely to have been facilitated by the detachment and dehydration of metasomatized mantle lithosphere.


Sign in / Sign up

Export Citation Format

Share Document