Applying machine learning for drought prediction using a large ensemble of climate simulations

Author(s):  
Elizaveta Felsche ◽  
Ralf Ludwig

<p>There is strong scientific and social interest to understand the factors leading to extreme events in order to improve the management of risks associated with hazards like droughts. Recent events like the summer 2018 drought in Germany already had severe und unexpected impacts, e.g. forest fires and crop failures; in order to increase preparedness robust prediction tools are  urgently required. In this study, machine learning methods are applied to predict the occurrence of a drought with lead times of one to three months. The approach takes into account a list of thirty atmospheric and soil variables<strong> </strong>as predictor input parameters from a single regional climate model initial condition large ensemble (CRCM5-LE). The data was produced the context of the ClimEx project by Ouranos with the Canadian Regional Climate Model (CRCM5) driven by 50 members of the Canadian Earth System Model (CanESM2) for the Bavarian and Quebec domains.</p><p>Drought occurrence was defined using the Standardized Precipitation Index. The training and test datasets were chosen from the current climatology (1955-2005) for the Munich and Lisbon subdomain within the CRCM5-LE. The best performing machine learning algorithms managed to obtain a correct classification of drought or no drought for a lead time of one month for around 60 % of the events of each class for the both domains. Explainable AI methods like feature importance and shapley values were applied to gain a better understanding of the trained algorithms. Physical variables like the North Atlantic Oscillation Index and air pressure one month before the event proved to be of high importance for the prediction. The study showed that better accuracies can be obtained for the Lisbon domain, due to the stronger influence of the North Atlantic Oscillation Index on Portugal’s climate.</p>

2008 ◽  
Vol 21 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Adam A. Scaife ◽  
Chris K. Folland ◽  
Lisa V. Alexander ◽  
Anders Moberg ◽  
Jeff R. Knight

Abstract The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.


Sign in / Sign up

Export Citation Format

Share Document