Constraining past bedrock surface temperatures at the Gorner glacier, Switzerland, using feldspar thermoluminescence for surface paleothermometry. 

Author(s):  
Joanne Elkadi ◽  
Rabiul Biswas ◽  
Georgina King ◽  
Frédéric Herman

<p>Our ability to quantify past climate conditions is crucial for predicting future scenarios and landscape evolution. To date, reconstructions of the Earth’s past climate have mostly relied on the use of climate proxies to infer previous surface conditions (e.g. Jones and Mann, 2004 for a review). However, few methods exist that are capable of directly measuring past temperature histories, particularly in terrestrial settings.</p><p>The aim of this study is to contribute towards a more detailed understanding of glacial and interglacial temperature fluctuations across the Central and Western Alps, from the Last Glacial Maximum to present day, by constraining past temperatures of exposed bedrock surfaces adjacent to the Gorner glacier in Zermatt, Switzerland. This is done through the recently developed application of feldspar thermoluminescence to surface paleothermometry (Biswas et al., 2018; 2020). The thermoluminescence signal of feldspar, from room temperature to 450°C, is sourced from a continuous distribution of electron traps within the crystal lattice (Biswas et al., 2018). The release of this trapped charge is temperature dependent and thus, at room temperature, results in traps with a range of thermal stabilities with electron residence times ranging from less than a year to several billion years (Aitken 1985). Traps sensitive to typical surface temperature variations (e.g. ∼10°C) have been shown to lie between 200°C and 250°C of the TL glow curve (Biswas et al., 2020). From this temperature range, five thermometers (200°C to 250°C in 10°C intervals) can be used together as a multi-thermometer, and subsequently combined with a Bayesian inversion approach to constrain thermal histories over the last ∼50 kyr (Biswas et al., 2020).</p><p>In this study, the preliminary temperature histories of five bedrock samples with independently constrained exposure ages, exposed progressively since the Last Glacial Maximum, will be presented.</p><p><strong>References:</strong></p><p>Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London.</p><p>Jones, P.D., Mann, M.E., 2004. Climate over past millennia. Reviews of Geophysics, 42, 2004.</p><p>Biswas, R.H., Herman, F., King, G.E., Braun, J., 2018. Thermoluminescence of feldspar as a multi-thermochronometer to constrain the temporal variation of rock exhumation in the recent past. Earth and Planetary Science Letters, 495, 56-68.</p><p>Biswas, R.H., Herman, F., King, G.E., Lehmann, B., Singhvi, A.K., 2020. Surface paleothermometry using low temperature thermoluminescence of feldspar. Climate of the Past, 16, 2075-2093.</p>

2012 ◽  
Vol 24 (4) ◽  
pp. 377-394 ◽  
Author(s):  
Dominic A. Hodgson ◽  
Michael J. Bentley ◽  
Christoph Schnabel ◽  
Andreas Cziferszky ◽  
Peter Fretwell ◽  
...  

AbstractWe studied the glacial geomorphology and geochronology of two ice-free valleys in the Dufek Massif (Antarctic Specially Protected Area 119) providing new constraints on past ice sheet thickness in the Weddell Sea embayment. 10Be and 26Al cosmogenic surface exposure dating provided chronological control. Seven glacial stages are proposed. These include an alpine glaciation, with subsequent (mid-Miocene?) over-riding by a warm-based ice sheet. Subsequent advances are marked by a series of minor drift deposits at 760 m altitude at > 1 Ma, followed by at least two later ice sheet advances that are characterized by extensive drift sheet deposition. An advance of plateau ice field outlet glaciers from the south postdated these drift sheets. The most recent advance involved the cold-based expansion of the ice sheet from the north at the Last Glacial Maximum, or earlier, which deposited a series of bouldery moraines during its retreat. This suggests at most a relatively modest expansion of the ice sheet and outlet glaciers dominated by a lateral ice expansion of just 2–3 km and maintaining a thickness similar to that of the northern ice sheet front. These observations are consistent with other reports of modest ice sheet thickening around the Weddell Sea embayment during the Last Glacial Maximum.


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


Sign in / Sign up

Export Citation Format

Share Document