Interaction between carbon cycling and phytoplankton community succession in hydropower reservoirs: Evidence from stable carbon isotope analysis

Author(s):  
Xiao jing ◽  
Wang baoli ◽  
Qiu Xiao-long ◽  
Yang Mei-ling ◽  
Liu Cong-qiang

<p><strong>Abstract:</strong> Carbon (C) cycling and phytoplankton community succession are very important for hydropower reservoir ecosystems; however, whether the former controls the latter or the reverse is still debated. To understand this process, we investigated phytoplankton species compositions, stable C isotope compositions of dissolved inorganic C and particulate organic C (δ<sup>13</sup>C-DIC and δ<sup>13</sup>C-POC), and related environmental factors in seven hydropower reservoirs on the Wujiang River, Southwest China. A total of 36 algal genera from seven phyla were identified, and phytoplankton community exhibited obvious temporal and spatial difference. The δ<sup>13</sup>C-DIC (from -9.96 to -3.73‰) and δ<sup>13</sup>C-POC (from -33.44 to -21.17‰) co-varied with the algal species succession and increased markedly during the shift of dominant species from Bacillariophyta to Pyrrophyta or Cyanophyta. In addition, the strong C fixation in the euphotic layer resulted in great δ<sup>13</sup>C-DIC and CO<sub>2</sub> stratification in the reservoir profile. Statistical analyses and C isotope evidence demonstrate that an increase in water temperature triggers phytoplankton community succession, and that CO<sub>2</sub> availability is a key to drive the succession direction, and in turn, C cycling is enhanced when phytoplankton are dominated by Pyrrophyta or Cyanophyta in hydropower reservoirs. This study confirms that C cycling and phytoplankton community succession interact with each other and evolve synchronously, and will be helpful to systematically evaluate the environmental consequences of river damming.</p><p><strong>Keywords: </strong>Carbon biogeochemical cycling; Phytoplankton community succession; Stable carbon isotope; Reservoir effect; Wujiang River.</p>

2014 ◽  
Vol 11 (5) ◽  
pp. 6615-6646 ◽  
Author(s):  
A. de Kluijver ◽  
P. L. Schoon ◽  
J. A. Downing ◽  
S. Schouten ◽  
J. J. Middelburg

Abstract. The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFA) were studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFA were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed larger isotopic variability in eutrophic lakes compared to oligo-mesotrophic lakes because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8–25 ‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.


2014 ◽  
Vol 11 (22) ◽  
pp. 6265-6276 ◽  
Author(s):  
A. de Kluijver ◽  
P. L. Schoon ◽  
J. A. Downing ◽  
S. Schouten ◽  
J. J. Middelburg

Abstract. The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFAs were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed overall higher isotopic variability in eutrophic lakes (n = 11) compared to oligo-mesotrophic lakes (n = 11) because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8–25‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.


Sign in / Sign up

Export Citation Format

Share Document