Spatio-temporal detection of converting from cropland to forest/grassland on the Loess Plateau using all available Landsat time-series images

Author(s):  
Zhihui Wang ◽  
Peiqing Xiao

<p><strong>Conversion of cropland to forest/grassland has become a key ecological restoration measure on the Loess Plateau since 1999. Accurate mapping of the spatio-temporal dynamic information of conversion from cropland into forest/grassland is necessary for studying the effects of vegetation change on hydro-ecological process and soil and water conservation on the Loess Plateau, China. Currently, the accuracy of change detection of farmland and forest/grassland at 30-m scale in this area is seriously affected by insufficient temporal information from observations and irregular fluctuations in vegetation greenness caused by precipitation and human activities. In this study, an innovative method for continuous change detection of cropland and forest/grassland using all available Landsat time-series data. The period with vegetation coverage is firstly identified using normalized difference vegetation index (NDVI) time series. The intra-annual NDVI time series is then developed at a 1-day resolution based on linear interpolation and S-G filtering using all available NDVI data during the period when vegetation types are stable. Vegetation type change is initially detected by comparing the NDVI of intra-annual composites and the newly observed NDVI. Finally, the time of change and classification for vegetation types are determined using decision tree rules developed using a combination of inter-annual and intra-annual NDVI temporal metrics. Validation results showed that the change detection was accurate, with an overall accuracy of 88.9% ± 1.0%, and a kappa coefficient of 0.86, and the time of change was successfully retrieved, with 85.2% of the change pixels attributed to within a 2-year deviation.</strong></p>

2018 ◽  
Vol 10 (11) ◽  
pp. 1775 ◽  
Author(s):  
Zhihui Wang ◽  
Wenyi Yao ◽  
Qiuhong Tang ◽  
Liangyun Liu ◽  
Peiqing Xiao ◽  
...  

Accurate identification of the spatiotemporal distribution of forest/grassland and cropland is necessary for studying hydro-ecological effects of vegetation change in the Loess Plateau, China. Currently, the accuracy of change detection of land cover using Landsat data in the loess hill and gully areas is seriously affected by insufficient temporal information from observations and irregular fluctuations in vegetation greenness caused by precipitation and human activities. In this study, we propose a method for continuous change detection for two types of land cover, mosaic forest/grassland and cropland, using all available Landsat data. The period with vegetation coverage is firstly identified using normalized difference vegetation index (NDVI) time series. The intra-annual NDVI time series is then developed at a 1-day resolution based on linear interpolation and S-G filtering using all available NDVI data during the period when vegetation types are stable. Vegetation type change is initially detected by comparing the NDVI of intra-annual composites and the newly observed NDVI. Finally, the time of change and classification for vegetation types are determined using decision tree rules developed using a combination of inter-annual and intra-annual NDVI temporal metrics. Validation results showed that the change detection was accurate, with an overall accuracy of 88.9% ± 1.0%, and a kappa coefficient of 0.86, and the time of change was successfully retrieved, with 85.2% of the change pixels attributed to within a 2-year deviation. Consequently, the accuracy of change detection was improved by reducing temporal false detection and enhancing spatial classification accuracy.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2019 ◽  
Vol 11 (14) ◽  
pp. 1683 ◽  
Author(s):  
Yangchengsi Zhang ◽  
Long Guo ◽  
Yiyun Chen ◽  
Tiezhu Shi ◽  
Mei Luo ◽  
...  

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.


2018 ◽  
Vol 40 ◽  
pp. 34-44 ◽  
Author(s):  
Mingquan Wu ◽  
Wenjiang Huang ◽  
Zheng Niu ◽  
Changyao Wang ◽  
Wang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document