grain for green project
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 322 ◽  
pp. 107636
Author(s):  
Jingjing Wang ◽  
Zhipeng Liu ◽  
Jianlun Gao ◽  
Lugato Emanuele ◽  
Yongqing Ren ◽  
...  

2021 ◽  
Author(s):  
Yuping Han ◽  
Fan Xia ◽  
Huiping Huang ◽  
Wenbin Mu

Grain for Green project (GGP) initialed by China government since 1999 has achieved substantial achievements accompanied with surface runoff decrease in the Loess Plateau but impacts of large-scale afforestation on regional water resources are uncertain. Hence, the objective of this study is to explore the impact of land use change on generalized water resources and ecological water stress using blue and green water concept taking Yanhe River Basin as a case study. Soil and Water Assessment Tool (SWAT) is applied to quantify summary of green and blue water which is defined as generalized water resources, ecological water requirement of vegetation (forest and grass), agricultural water footprint and virtual water flow are considered as regional water requirements. Land use types of 1980 (scenario?), 2017 (scenario?) are input in SWAT model while keeps other parameters constant in order to isolate the influence of land use changes. Results show that average annual difference of blue, green and generalized water resources is -72.08 million m 3 , 24.34 million m 3 , -47.74 million m 3  respectively when simulation results of scenario? subtracts scenario?and it presents that land use change caused by GGP leads to decrease in blue and generalized water resources whereas increase in green water resources. SURQ in scenario?is more than that in scenario?in all the study period from 1980-2017, green water storage in scenario?is more than that in scenario? in all the study period except in 1998; whereas LATQ in scenario?is less than that in scenario? except in 2000 and 2015, GWQ in 1992, 2000 and 2015, green water flow in 1998. Blue water, green water storage and green water flow in scenario? is less than that in scenario?in the whole basin, 12.89 percent of the basin and 99.21 percent of the basin respectively. Total WF increases from 1995 to 2010 because forest WF increases significantly in this period though agricultural WF and grass WF decreases. Ecological water stress index has no obvious temporal change trend in both land use scenarios but ecological water stress index in scenario? is more than that in scenario?which illustrates that GGP leads to increase of ecological water stress from perspective of generalized water resources


2021 ◽  
Vol 13 (16) ◽  
pp. 3302
Author(s):  
Linjing Qiu ◽  
Yuting Chen ◽  
Yiping Wu ◽  
Qingyue Xue ◽  
Zhaoyang Shi ◽  
...  

The vegetation coverage on the Loess Plateau (LP) of China has clearly increased since the implementation of the Grain for Green Project in 1999, but there is a debate about whether the improved greenness was achieved at the expense of the balance between the supply and demand of water resources. Therefore, developing reliable indicators to evaluate the water availability is a prerequisite for maintaining ecological sustainability and ensuring the persistence of vegetation restoration. This study was designed to evaluate water availability on the LP during 2000–2015, using the evaporative stress index (ESI) derived from a remote sensing dataset. The relative dependences of the ESI on climatic and biological factors (including temperature, precipitation and land cover change) were also analyzed. The results showed that the leaf area index (LAI) in most regions of the LP showed a significant increasing trend (p < 0.05), and larger gradients of increase were mainly detected in the central and eastern parts of the LP. The evapotranspiration also exhibited an increasing trend in the central and eastern parts of the LP, with a gradient greater than 10 mm/year. However, almost the whole LP exhibited a decreased ESI from 2000 to 2015, and the largest decrease occurred on the central and eastern LP, indicating a wetting trend. The soil moisture storage in the 0–289-cm soil profiles showed an increasing trend in the central and eastern LP, and the area with an upward trend enlarged with the soil depth. Further analysis revealed that the decreased ESI on the central and eastern LP mainly depended on the increase in the LAI compared with climatic influences. This work not only demonstrated that the ESI was a useful indicator for understanding the water availability in natural and managed ecosystems under climate change but also indicated that vegetation restoration might have a positive effect on water conservation on the central LP.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pei Duan ◽  
Shengdong Chen ◽  
Heng Zhang ◽  
Fuchun Zhang

Purpose This study aims to focus on the analysis of the internal mechanism of farmers’ ecological cognition and the behaviour of Grain for Green Project (GGP), and the further relationship between ecological cognition and ecological aspiration, proposing climate change strategies and management from the perspective of farmers. Design/methodology/approach Theory of planned behaviour and social exchange theory were used to construct a theoretical framework and an ecological cognition under the influence of external factors, the aspiration and the behaviour of GGP, using ecological fragile areas in Bazhou and Changji, Xinjiang of 618 peasant households’ survey data. The structural equation model and Heckman two-step model were applied to analyse the relationship between ecological cognition and ecological aspiration of farmers, the impact of peasant households’ ecological cognition and aspiration to the behaviour of GGP and the influence factors of GGP behaviour. Findings This research’s results show that the three characterizations of ecological cognitive variables, attitude towards the behaviour (AB), subjective norms (SN) and perceived behaviour control (PBC), have significant positive impact on farmers’ GGP ecological aspiration. The comprehensive impact path coefficients of ecological cognition are PBC (0.498) > SN (0.223) > AB (0.177). Also, income change is a moderating variable, which has a significant moderating effect on the influence of AB and SN on ecological aspiration. Further, farmers’ ecological cognition has an influence on the behaviour of GGP, and the change of farmers’ income has a significant positive effect on farmers’ choice of returning farmland to forests. Practical implications The ecological protection policy suggestions and countermeasures can be drawn from the research conclusions, adapted to China’s ecologically fragile regions and even similar regions in the world to response the climate change. Originality/value Combining the theory of planning behaviour and social exchange, this paper empirically analyses the path of farmers’ ecological cognition and ecological aspiration, as well as the influencing factors.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 537
Author(s):  
Huijie Li ◽  
Xiang Niu ◽  
Bing Wang

The Grain for Green Project (GGP) was implemented over 20 years ago as one of six major forestry projects in China, and its scope of implementation is still expanding. However, it is still unclear how many ecosystem services (ESs) the project will produce in the future. The GGP’s large-scale ecological monitoring officially started in 2015 and there is a lack of early monitoring data, making it challenging to predict the future ecological benefits. Therefore, this paper proposes a method to predict future ESs by using ecological monitoring data. First, a new ensemble learning system, auto-XGBoost-ET-DT, is developed based on ensemble learning theory. Using the GGP’s known ESs in 2015, 2017, and 2019, the missing ESs of the past decade have been evaluated via reverse regression. Data from 2020 to 2022 within a convolution neural network and the coupling coordination degree model have been used to analyze the coupling between the prediction results and economic development. The results show that the growth distributions of ESs in three years were as follows: soil consolidation, 3.70–6.34%; forest nutrient retention, 2.72–.71%; water conservation, 2.52–6.09%; carbon fixation and oxygen release, 3.00–4.64%; and dust retention, 3.82–5.75%. The coupling coordination degree of the ESs and economic development has been improved in 97% of counties in 2020 compared with 2019. The results verify a feasible ES prediction method and provide a basis for the progressive implementation of the GGP.


2021 ◽  
Author(s):  
Yuan Zhong ◽  
Chunmei Wang ◽  
Guowei Pang ◽  
Qinke Yang ◽  
Zitian Guo ◽  
...  

&lt;p&gt;Soil erosion is an important threat in the high-quality development of the Loess Plateau of China, and Ephemeral Gully (EG) erosion is an important erosion type. Answering the distribution characteristics of EG at the regional scale is an important basis for EG control. The regional distribution of EG and the areas that still at high risk of EG development after the 'Grain for Green Project' since more than 20 years ago remain poorly understood. This study aimed to solve the above problems by using visual interpretation based on sub-meter Google Earth images in 137 systematically selected small watersheds in the Loess Plateau. The EG density, length, land use of the hillslope where each EG existed, and other parameters were obtained and analyzed using the GIS method. The spatial distribution of EG density, average length, and spatial correlation in the Loess Plateau was explored. The current EG distribution and key prevention areas in the Loess Plateau were identified. The results showed that: (1) EGs were found in 46 surveyed watersheds accounting for 33.6% of the total watershed number, with an EG density average value of 3.41km/km&lt;sup&gt;2&lt;/sup&gt; and maximum value of 21.92 km/km&lt;sup&gt;2&lt;/sup&gt;. The average number of EG was 60.32/km&lt;sup&gt;2&lt;/sup&gt;. EG length was mainly distributed in 20 ~ 60 m, with an average length of 63.31 m; The critical slope length of EGs was mainly 40 ~ 60 m, with an average 56.20 m. (2) The watersheds with EGs were mainly located in the north-central, the west, and northwest of the Loess Plateau. EG erosion is extremely strong in loess hilly and gully region, and moderate in loess plateau gully region.(3) 38.3% of EG was distributed in cropland; 35.3% distributed in grassland; 22.8% distributed in forest land. After the 'Grain for Green Project', the EGs that were still distributed on cropland were a more important threat to soil erosion and need better prevention efforts. EGs located on cropland were still widely distributed in many areas of Loess Plateau, such as the northwest of Yan 'an City in the middle and upper reaches of Beiluo River, Suide and Luliang in the lower reaches of Wuding River, at the junction of Dingxi and Huining and in Qingyang area. This research would help in a more reasonable distribution of erosion control practices in the Loess Plateau.&lt;/p&gt;


2021 ◽  
Vol 668 (1) ◽  
pp. 012036
Author(s):  
Guotao Dong ◽  
Jiahe Gu ◽  
Xizhi Lv ◽  
Huazhu Xue ◽  
Yaokang Lian

Sign in / Sign up

Export Citation Format

Share Document