WRF4PALM v1.0: A Mesoscale Dynamic Driver for the Microscale PALM Model System 6.0

Author(s):  
Dongqi Lin ◽  
Basit Khan ◽  
Marwan Katurji ◽  
Leroy Bird ◽  
Ricardo Faria ◽  
...  

<p>A set of Python-based tools, WRF4PALM, has been developed for offline-nesting of the PALM model system 6.0 into the Weather Research and Forecasting (WRF) modelling system. Time-dependent boundary conditions of the atmosphere are critical for accurate representation of microscale meteorological dynamics in high resolution real-data simulations. WRF4PALM generates initial and boundary conditions from WRF outputs to provide time-varying meteorological forcing for PALM. The WRF model has been used across the atmospheric science community for a broad range of multidisciplinary applications. The PALM model system 6.0 is a turbulence-resolving large-eddy simulation model with an additional Reynolds averaged Navier–Stokes (RANS) mode for atmospheric and oceanic boundary layer studies at microscale (Maronga et al., 2020). Currently PALM has the capability to ingest output from the regional scale Consortium for Small-scale Modelling (COSMO) atmospheric prediction model. However, COSMO is not an open source model which requires a licence agreement for operational use or academic research (). This paper describes and validates the new free and open-source WRF4PALM tools (available on ). Two case studies using WRF4PALM are presented for Christchurch, New Zealand, which demonstrate successful PALM simulations driven by meteorological forcing from WRF outputs. The WRF4PALM tools presented here can potentially be used for micro- and mesoscale studies worldwide, for example in boundary layer studies, air pollution dispersion modelling, wildfire emissions and spread, urban weather forecasting, and agricultural meteorology.</p>

2020 ◽  
Author(s):  
Dongqi Lin ◽  
Basit Khan ◽  
Marwan Katurji ◽  
Leroy Bird ◽  
Ricardo Faria ◽  
...  

Abstract. A set of Python-based tools, WRF4PALM, has been developed for offline-nesting of the PALM model system 6.0 into the Weather Research and Forecasting (WRF) modelling system. Time-dependent boundary conditions of the atmosphere are critical for accurate representation of microscale meteorological dynamics in high resolution real-data simulations. WRF4PALM generates initial and boundary conditions from WRF outputs to provide time-varying meteorological forcing for PALM. The WRF model has been used across the atmospheric science community for a broad range of multidisciplinary applications. The PALM model system 6.0 is a turbulence-resolving large-eddy simulation model with an additional Reynolds averaged Navier–Stokes (RANS) mode for atmospheric and oceanic boundary layer studies at microscale (Maronga et al., 2020). Currently PALM has the capability to ingest output from the regional scale Consortium for Small-scale Modelling (COSMO) atmospheric prediction model. However, COSMO is not an open source model which requires a licence agreement for operational use or academic research (http://www.cosmo-model.org/). This paper describes and validates the new free and open-source WRF4PALM tools (available on https://github.com/dongqi-DQ/WRF4PALM). Two case studies using WRF4PALM are presented for Christchurch, New Zealand, which demonstrate successful PALM simulations driven by meteorological forcing from WRF outputs. The WRF4PALM tools presented here can potentially be used for micro- and mesoscale studies worldwide, for example in boundary layer studies, air pollution dispersion modelling, wildfire emissions and spread, urban weather forecasting, and agricultural meteorology.


2012 ◽  
Vol 5 (1) ◽  
pp. 87-110 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel

Abstract. The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.


2020 ◽  
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR, which provides initial and time-dependent boundary conditions from mesoscale model output and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which besides the temporal interpolation of boundary conditions and removal of any residual divergence includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about 1.5 eddy turn-over times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of under-resolved convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2021 ◽  
Vol 14 (9) ◽  
pp. 5435-5465
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR (initialization and forcing), which provides initial and time-dependent boundary conditions from mesoscale model output, and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which, besides the temporal interpolation of boundary conditions and removal of any residual divergence, includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about two to three eddy-turnover times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of grid-scale convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2020 ◽  
Author(s):  
Antti Hellsten ◽  
Klaus Ketelsen ◽  
Matthias Sühring ◽  
Mikko Auvinen ◽  
Björn Maronga ◽  
...  

Abstract. Large-eddy simulation provides a physically sound approach to study complex turbulent processes within the atmospheric boundary layer including urban boundary layer flows. However, such flow problems often involve a large separation of turbulent scales, requiring a large computational domain and very high grid resolution near the surface features, leading to prohibitive computational costs. To overcome this problem, an online LES-LES nesting scheme is implemented into the PALM model system 6.0. The hereby documented and evaluated nesting method is capable of supporting multiple child domains which can be nested within their parent domain either in a parallel or recursively cascading configuration. The nesting system is evaluated by simulating first a purely convective boundary layer flow system and then three different neutrally-stratified flow scenarios with increasing order of topographic complexity. The results of the nested runs are compared with corresponding non-nested high- and low-resolution results. The results reveal that the solution accuracy within the high-resolution nest domain is clearly improved as the solutions approach the non-nested high-resolution reference results. In obstacle-resolving LES, the two-way coupling becomes problematic as anterpolation introduces a regional discrepancy within the obstacle canopy of the parent domain. This is remedied by introducing canopy-restricted anterpolation where the operation is only performed above the obstacle canopy. The test simulations make evident that this approach is the most suitable coupling strategy for obstacle-resolving LES. The performed simulations testify that nesting can reduce the CPU time up to 80 % compared to the fine-resolution reference runs while the computational overhead from the nesting operations remained below 16 % for the two-way coupling approach and significantly less for the one-way alternative.


2021 ◽  
Vol 14 (6) ◽  
pp. 3185-3214
Author(s):  
Antti Hellsten ◽  
Klaus Ketelsen ◽  
Matthias Sühring ◽  
Mikko Auvinen ◽  
Björn Maronga ◽  
...  

Abstract. Large-eddy simulation (LES) provides a physically sound approach to study complex turbulent processes within the atmospheric boundary layer including urban boundary layer flows. However, such flow problems often involve a large separation of turbulent scales, requiring a large computational domain and very high grid resolution near the surface features, leading to prohibitive computational costs. To overcome this problem, an online LES–LES nesting scheme is implemented into the PALM model system 6.0. The hereby documented and evaluated nesting method is capable of supporting multiple child domains, which can be nested within their parent domain either in a parallel or recursively cascading configuration. The nesting system is evaluated by first simulating a purely convective boundary layer flow system and then three different neutrally stratified flow scenarios with increasing order of topographic complexity. The results of the nested runs are compared with corresponding non-nested high- and low-resolution results. The results reveal that the solution accuracy within the high-resolution nest domain is clearly improved as the solutions approach the non-nested high-resolution reference results. In obstacle-resolving LES, the two-way coupling becomes problematic as anterpolation introduces a regional discrepancy within the obstacle canopy of the parent domain. This is remedied by introducing canopy-restricted anterpolation where the operation is only performed above the obstacle canopy. The test simulations make evident that this approach is the most suitable coupling strategy for obstacle-resolving LES. The performed simulations testify that nesting can reduce the CPU time up to 80 % compared to the fine-resolution reference runs, while the computational overhead from the nesting operations remained below 16 % for the two-way coupling approach and significantly less for the one-way alternative.


2013 ◽  
Vol 726 ◽  
pp. 559-595 ◽  
Author(s):  
Ross W. Griffiths ◽  
Graham O. Hughes ◽  
Bishakhdatta Gayen

AbstractThe dynamics of horizontal convection are revealed by examining transient adjustment toward thermal equilibrium. We restrict attention to high Rayleigh numbers (of $O(1{0}^{12} )$) and a Prandtl number ${\sim }5$ that characterize many practical applications, and consider responses to small changes in the thermal boundary conditions, using laboratory experiments, three-dimensional direct numerical simulations (DNS) and simple theoretical models. The experiments and the mechanical energy budget from the DNS demonstrate that unsteady forcing can produce flow dramatically more active than horizontal convection under steady forcing. The physical mechanisms at work are indicated by the time scales of approach to the new equilibrium, and we show that these can range over two orders of magnitude depending on the imposed change in boundary conditions. Changes that lead to a net destabilizing buoyancy flux give rapid adjustments: for applied heat flux conditions the whole of the circulation is controlled by conduction through the stable portion of the boundary layer, whereas for applied temperature difference the circulation is controlled by small-scale convection within the unstable part of the boundary layer. The experiments, DNS and models are in close agreement and show that the time scale under applied temperatures is as small as 0.01 vertical diffusion time scales, a factor of four smaller than for imposed flux. Both cases give adjustments too rapid for diffusion in the interior to play a significant role, at least through 99 % of the adjustment, and we conclude that diffusion through the full depth is not significant in setting the equilibrium state. Boundary changes leading to a net stabilizing buoyancy flux give a very different response, causing the convection to quickly form a shallow circulation cell, followed eventually by a return to full-depth overturning through a combination of penetrative convection and conduction. The time scale again varies by orders of magnitude, depending on the boundary conditions and the location of the imposed boundary perturbation.


10.35294/tm46 ◽  
2020 ◽  
Author(s):  
Fernando Miró Miró ◽  
Koen Groot ◽  
Ethan S. Beyak ◽  
Alexander J. Moyes ◽  
Fabio Pinna ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document