Optical properties of Gobi dust and its pure compounds: experimental extinction spectra and complex refractive indices determination.

Author(s):  
Lise Deschutter ◽  
Hervé Herbin ◽  
Denis Petitprez

<p>Spectrometers are powerful instruments to detect atmospheric aerosols, especially on satellites since they allow measurements at a global scale and over different spectral ranges with high spectral resolution. However, to fully exploit their capabilities and to link optical properties, chemical composition and mass concentration, it is essential to have reference optical properties of various particles and mainly the complex refractive indices (CRI). The CRI of a natural aerosol source can be determined from a real sample of it or applying the effective medium approximation using the CRI of the pure compounds present in the natural sample. But in that case, it is necessary to know the mass fraction of each individual compound and above all their CRI. Nevertheless, the literature and CRI databases provide only reflectance measurements on bulk materials or pressed pellets and over a limited wavelength range (Querry <em>et al.</em>, 1987).</p><p>In the present work, dust from the Gobi desert is studied as it is the second most active dust source, after the Sahara desert, in terms of mass emissions (Querol <em>et al.</em>, 2019). For that extinction spectra have been recorded for natural Gobi dust sample and for its major compounds (Illite, Calcite and Quartz). Particles as a powder in a vessel are generated thanks to a magnetic stirring and a flow of nitrogen (Hubert <em>et al.</em>, 2017). The continuous flow of aerosols is directed into a 10-meters multipass cell fitted to a Fourier transform infrared spectrometer and a 1-meter singlepass cell within a UV-Visible spectrometer which cover a continuous spectral range from 650 cm<sup>-1</sup> to 40000 cm<sup>-1</sup>. Moreover, at the exit of the spectrometers the size distribution is recorded by an aerodynamic particle sizer and a scanning mobility particle sizer which allow to measure size particles from 14 nm to 20 µm. An inversion algorithm is carried out using experimental extinction spectra and the size distribution as input data (Herbin <em>et al.</em>, 2017). Applying the Mie theory and the single subtractive Kramers-Kröning integral, the real and the imaginary part of the CRI are retrieved at each wavelength with an optimal estimation method.</p><p>For the first time, CRI of Illite has been retrieved with a high spectral resolution (1 cm<sup>-1</sup>) and over a wide spectral range for suspended particles. For calcite and quartz particles, the crystalline phase has to be considered by introducing the ordinary and extraordinary indices. These pure compound sets of CRI will be used for testing effective medium approximation on Gobi dust for which effective CRI have been also retrieved.</p>

2019 ◽  
Vol 11 (17) ◽  
pp. 2007 ◽  
Author(s):  
Changhui Jiang ◽  
Yuwei Chen ◽  
Haohao Wu ◽  
Wei Li ◽  
Hui Zhou ◽  
...  

Non-contact and active vegetation or plant parameters extraction using hyperspectral information is a prospective research direction among the remote sensing community. Hyperspectral LiDAR (HSL) is an instrument capable of acquiring spectral and spatial information actively, which could mitigate the environmental illumination influence on the spectral information collection. However, HSL usually has limited spectral resolution and coverage, which is vital for vegetation parameter extraction. In this paper, to broaden the HSL spectral range and increase the spectral resolution, an Acousto-optical Tunable Filter based Hyperspectral LiDAR (AOTF-HSL) with 10 nm spectral resolution, consecutively covering from 500–1000 nm, was designed. The AOTF-HSL was employed and evaluated for vegetation parameters extraction. “Red Edge” parameters of four different plants with green and yellow leaves were extracted in the lab experiments for evaluating the HSL vegetation parameter extraction capacity. The experiments were composed of two parts. Firstly, the first-order derivative of the spectral reflectance was employed to extract the “Red Edge” position (REP), “Red Edge” slope (RES) and “Red Edge” area (REA) of these green and yellow leaves. The results were compared with the referenced value from a standard SVC© HR-1024 spectrometer for validation. Green leaf parameter differences between HSL and SVC results were minor, which supported that notion the HSL was practical for extracting the employed parameter as an active method. Secondly, another two different REP extraction methods, Linear Four-point Interpolation technology (LFPIT) and Linear Extrapolation technology (LET), were utilized for further evaluation of using the AOTF-HSL spectral profile to determine the REP value. The differences between the plant green leaves’ REP results extracted using the three methods were all below 10%, and the some of them were below 1%, which further demonstrated that the spectral data collected from HSL with this spectral range and resolution settings was applicable for “Red Edge” parameters extraction.


2018 ◽  
Vol 616 ◽  
pp. A135 ◽  
Author(s):  
F. Martins

Our goal is to provide a quantification of several spectral classification criteria for O stars. We collect high-spectral resolution spectra of 105 Galactic O-type stars from various archives. We measured equivalent widths of classification lines. We defined average values of classification criteria for given spectral types and luminosity classes. We find that the ratio He I 4471 to He II 4542 well matches the published ratios for spectral types. We have quantified equivalent width ratios of helium and silicon lines among O8–O9.7 stars to refine spectral class typing in this spectral range. We present quantitative criteria to separate between luminosity class V, IV–III–II (grouped), and I among O3–O8.5 stars, mainly based on the strength of He II 4686. We find that these criteria also define very well the f, (f), and ((f)) classes for O3–O7.5 stars. Among O9–O9.7 stars we quantify the ratios of He II 4686 to He I 4713 and Si IV 4089 to He I 4026 for all luminosity classes. The tabulated values of the classification criteria should help classify any new O-type stars. The final step of the classification process should rely on a direct comparison to standard stars of the assigned spectral type or luminosity class.


1971 ◽  
Vol 40 ◽  
pp. 44-47
Author(s):  
R. A. Hanel ◽  
V. G. Kunde ◽  
T. Meilleur ◽  
G. Stambach

The thermal emission spectra of Venus, Mars, Jupiter, and the moon were observed at the coude focus of the McDonald Observatory 107-inch telescope in the 400–1400 cm−1 spectral range with spectral resolutions of 0.3–0.7 cm−1. A preliminary interpretation of the Venus/lunar ratio spectrum allows identification of four upper state CO2 bands in the Venusian atmosphere at 791, 828, 865, and 961 cm−1 and confirms previous observations of the broad absorption-like depression around 890 cm−1. The rotational structure of the 791 and 961 cm−1 bands is well developed at this spectral resolution.


2008 ◽  
Vol 47 (36) ◽  
pp. 6734 ◽  
Author(s):  
Johnathan W. Hair ◽  
Chris A. Hostetler ◽  
Anthony L. Cook ◽  
David B. Harper ◽  
Richard A. Ferrare ◽  
...  

2013 ◽  
Vol 21 (11) ◽  
pp. 13084 ◽  
Author(s):  
Dong Liu ◽  
Yongying Yang ◽  
Zhongtao Cheng ◽  
Hanlu Huang ◽  
Bo Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document