Luminescence dating of the last glaciation maximum in the southern Black Forest, Germany: Preliminary results

Author(s):  
Felix Martin Hofmann ◽  
Alexander Fülling ◽  
Frank Preusser

<p>During the last glaciation maximum, an ice cap and its more than 20 kilometres-long outlet glaciers covered the highest summit of the Black Forest, the Feldberg (1493 m above sea-level), and the surrounding region (Hofmann et al., 2020). This event is tentatively correlated with the global last glacial maximum (at ca. 22-19 ka). However, this hypothesis has never been tested by applying up-to-date geochronological techniques to glacial deposits or landforms. Due to the lack of significant topographic control, the climate probably mainly controlled the mass balance of the ice cap. Dating its last maximum extent may thus have important implications for the reconstruction of atmospheric circulations patterns during the Pleistocene. A last glaciation maximum out of phase with the Alps would strengthen the hypothesis that a meridional atmospheric circulation prevailed over Europe during the last glaciation maximum in the Alps (at ca. 25 ka).</p><p>We aim at filling this gap by re-investigating a well-preserved multi-ridged terminal moraine complex several kilometres north-west of the Feldberg. Since the beginning of the twentieth century, this landform is undisputedly assigned to the last glaciation maximum. As units of sorted sediments occur in two sections on one ridge of the terminal moraine complex, luminescence dating was deemed a suitable technique to infer the age of the landform.</p><p>Luminescence dating was applied to both feldspar and quartz for suitable comparison, as these dosimeters have different drawbacks. Since quartz from crystalline source areas often shows no or only a relatively weak luminescence signal, we anticipated that this also applies to the sampled sediments from the crystalline part of the Black Forest. Optically-stimulated luminescence (OSL) measurements revealed a bright signal in quartz as well as equivalent doses in the order of 200 Gy considerably below the saturation level. We did not observe any obvious signs for partial bleaching, but this possibility has to be confirmed via further OSL measurements, since the sampled sediments were not transported over large distances. Component analysis will also be performed.</p><p>Infrared-stimulated luminescence (IRSL) measurements on feldspar revealed higher preliminary luminescence ages. It is expected that anomalous fading and partial bleaching will be two major future challenges. To overcome the first problem, post-infrared IRSL dating will be applied. As resetting of this signal is more difficult when compared to IRSL and OSL signals, problems associated with incomplete bleaching may arise in future work.</p><p>Our preliminary quartz OSL ages tentatively suggest that the last glaciation maximum in the southern Black Forest preceded the last glaciation maxima in other formerly glaciated uplands in Central Europe and the global last glacial maximum. This result needs to be evaluated by luminescence dating of other ice-marginal landforms correlative with the last glaciation maximum. Other geochronological techniques, such as <sup>10</sup>Be cosmic-ray exposure dating, will also be applied to reveal their age.</p><p> </p><p><strong>Reference</strong></p><p>Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Science Journal, 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.</p><p> </p><p> </p><p> </p>

2020 ◽  
Vol 69 (1) ◽  
pp. 61-87
Author(s):  
Felix Martin Hofmann ◽  
Florian Rauscher ◽  
William McCreary ◽  
Jan-Paul Bischoff ◽  
Frank Preusser

Abstract. The southern Black Forest was temporarily covered by a ∼1000 km2 large ice cap during the Late Pleistocene. However, during the last glaciation maximum in the Alps the atmospheric circulation over Europe was presumably characterised by the advection of humid air masses from the Mediterranean Sea. As a consequence, the ice cap of the Black Forest was likely in a leeward position due to its location north of the Alps. This raises the question of whether it reached its last maximum extent simultaneously with the glaciers in the Alps. As modern dating techniques have hitherto not been applied to the southern Black Forest, the timing of the last local glaciation maximum remains poorly constrained. As a first step towards an independent regional glacier chronology, we present a critical re-examination of glacial landforms in the area north-west of the highest summit of the Black Forest (Feldberg, 1493 m a.s.l.). It relies on both the analysis of remote sensing data and field mapping. The review of previous studies highlights important disagreements regarding the location of ice-marginal positions and their correlation. In addition, our findings challenge earlier studies on the glaciation of the Black Forest: some previously described ice-marginal positions could not be confirmed, whereas some of the newly identified moraines are described for the first time. This highlights the need for detailed geomorphological investigations prior to the application of geochronological methods. A multi-ridged series of terminal moraines in one of the studied valleys, Sankt Wilhelmer Tal, is proposed as the main target for future dating. Due to discrepancies with earlier studies, future efforts should reinvestigate other key areas related to the last glaciation of the southern Black Forest.


2016 ◽  
Vol 71 (3) ◽  
pp. 173-187 ◽  
Author(s):  
Patrick Becker ◽  
Julien Seguinot ◽  
Guillaume Jouvet ◽  
Martin Funk

Abstract. During the Last Glacial Maximum (LGM), glaciers in the Alps reached a maximum extent, and broad sections of the foreland were covered by ice. In this study, we simulated the alpine ice cap using a glacier flow model to constrain the prevailing precipitation pattern with a geomorphological reconstruction of ice extent. For this purpose we forced the model using different temperature cooling and precipitation reduction factors. The use of the present-day precipitation pattern led to a systematic overestimation of the ice cover on the northern part of the Alps relative to the southern part. To reproduce the LGM ice cap, a more severe decrease in precipitation in the north than in the south was required. This result supports a southwesterly advection of atmospheric moisture to the Alps, sustained by a southward shift of the North Atlantic storm track during the LGM.


2020 ◽  
Author(s):  
Felix Martin Hofmann ◽  
William McCreary ◽  
Frank Preusser

<p>Chronological evidence from the southern part of the Alps (Monegato et al. 2017) indicates an earlier last glacial maximum of the Alpine glaciers relative to the Eurasian Ice Sheet maximum extent. This asynchronicity is probably due to the expansion of the North American Ice Sheet causing a southward shift of the North Atlantic jet stream and the establishment of a meridional atmospheric circulation over Europe (Luetscher et al. 2015). The advection of humid air masses from the Mediterranean Sea caused the Alpine glaciers to reach their maximum extent prior to the Eurasian ice sheet. Hence, the ice cap of the southern Black Forest must have been in a lee position with respect to the Alpine glaciers. This suggests that the last glacial maximum in the Black Forest was out of phase with the Alps. Since the lack of chronological data from the southern Black Forest prevents this hypothesis to be tested, a glacier chronology is crucially needed. As a first step towards such a framework, glacial landforms in the southern Black Forest are mapped based on both the analysis of highresolution LiDAR (Light detecting and ranging) data and its derivates as well as field mapping. Geomorphological mapping of a key site resulted in the identification of 18 ice-marginal positions in a single valley, whereby a significant number of moraines has been mapped for the first time. These findings reinforce the idea of a dynamic Lateglacial in the southern Black Forest interrupted by multiple periods of moraine stabilisation. Additional geomorphological and sedimentological investigations will be carried out to provide a solid base for the application of up-to-date geochronological methods (<sup>10</sup>Be exposure dating of boulders on moraines and optically stimulated luminescence dating) with particular emphasis on supposed last local glacial maximum moraines. Geomorphological, sedimentological and geochronological evidence will then be combined for palaeoglacier modelling. The determination of equilibrium line altitudes will ultimately enable the determination of palaeo-precipitation and –temperature during the last local glacial maximum and the subsequent Lateglacial. This palaeoclimatic reconstruction will be supported by data from the lake Bergsee record (southernmost Black Forest) spanning the 45-14.7 ka period (Duprat-Oualid et al. 2017).</p><p><strong>References</strong></p><p>Duprat-Oualid F., Rius D., Bégeot C., Magny M., Millet L., Wulf S., Appelt O. 2017. Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: the Bergsee lacustrine record (Black Forest, Germany). J. Quaternary Sci. 32, 1008-1021.</p><p>Luetscher M., Boch R., Sodemann H., Spötl C., Cheng H., Edwards R.L., Frisia S., Hof F., Müller W. 2015. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 6344.</p><p>Monegato G., Scardia G., Hajdas I., Rizzini F., Piccin A. 2017. The Alpine LGM in the boreal ice-sheets game. Sci. Rep-UK 7, 2078.</p><p> </p>


2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


2008 ◽  
Vol 69 (1) ◽  
pp. 130-144 ◽  
Author(s):  
Kurt A. Refsnider ◽  
Benjamin J.C. Laabs ◽  
Mitchell A. Plummer ◽  
David M. Mickelson ◽  
Bradley S. Singer ◽  
...  

During the last glacial maximum (LGM), the western Uinta Mountains of northeastern Utah were occupied by the Western Uinta Ice Field. Cosmogenic10Be surface-exposure ages from the terminal moraine in the North Fork Provo Valley and paired26Al and10Be ages from striated bedrock at Bald Mountain Pass set limits on the timing of the local LGM. Moraine boulder ages suggest that ice reached its maximum extent by 17.4±0.5 ka (± 2σ).10Be and26Al measurements on striated bedrock from Bald Mountain Pass, situated near the former center of the ice field, yield a mean26Al/10Be ratio of 5.7±0.8 and a mean exposure age of 14.0±0.5 ka, which places a minimum-limiting age on when the ice field melted completely. We also applied a mass/energy-balance and ice-flow model to investigate the LGM climate of the western Uinta Mountains. Results suggest that temperatures were likely 5 to 7°C cooler than present and precipitation was 2 to 3.5 times greater than modern, and the western-most glaciers in the range generally received more precipitation when expanding to their maximum extent than glaciers farther east. This scenario is consistent with the hypothesis that precipitation in the western Uintas was enhanced by pluvial Lake Bonneville during the last glaciation.


2018 ◽  
Vol 89 (2) ◽  
pp. 494-504 ◽  
Author(s):  
Hang Cui ◽  
Jie Wang ◽  
Beibei Yu ◽  
Zhenbo Hu ◽  
Pan Yao ◽  
...  

AbstractGlacial extent mapping and dating indicate that the local last glacial maximum (LLGM) of the northeastern Tibetan Plateau occurred during mid-Marine Isotope Stage (MIS) 3. This is asynchronous with the global last glacial maximum (LGM) that occurred during MIS 2. The causes underlying this asynchronicity are the subject of ongoing debate, and paleoclimatic reconstructions are a key to advancing understanding of the climatic influence on the spatial and temporal patterns of paleoglaciation. We used multiple methods to reconstruct the equilibrium-line altitude (ELA) of the Die Shan paleo-ice cap on the northeastern Tibetan Plateau, and to infer past temperature for ice maximum positions believed to be mid-MIS 3 in age, based on regional correlation. Geomorphic ELA reconstructions combined with an energy and mass balance model yield a paleo-ELA of 4117±31 m asl (786 m lower than present) with temperature depressions of 3.8 to ~4.6°C compared to the present. This is less than the LGM reconstruction of temperature depression inferred from other climatic proxy records on the Tibetan Plateau and suggests that the LLGM glacial advance was a product of lower temperatures and slightly reduced precipitation compared to present, whereas the LGM was a more restricted advance in which much colder conditions were combined with much lower precipitation.


2020 ◽  
Vol 35 (7) ◽  
pp. 935-950
Author(s):  
Adem Candaş ◽  
M. Akif Sarikaya ◽  
Oğuzhan KÖSE ◽  
Ömer L. Şen ◽  
Attila Çiner

Sign in / Sign up

Export Citation Format

Share Document