Nutrient and microbial dynamics of soils amended with sewage sludge stabilized with clay minerals and biochar; a preliminary study.

Author(s):  
Georgios Giannopoulos ◽  
Anastasia-Garyfallia Karagianni ◽  
Athanasios Balidakis ◽  
Ioannis Ipsilantis ◽  
Theodora Matsi

<p>Sewage sludge production from wastewater treatment plants (WWTP) progressively exceeds 60 Million m<sup>3</sup> p.a. in the EU. Although it is rich in organic matter (OM) and essential nutrients for crop production, sewage sludge is mainly disposed in landfills. Under the framework of Cyclic Economy and EU Green Deal, sewage sludge represents an ideal soil amendment and fertilizer with a potential to increase soil OM, provide nutrients and reduce chemical fertilization. Nonetheless, its agronomic use comes with limitations due to the presence of heavy metals and pathogenic microorganisms. Several stabilization technologies, including composting, thermal treatment and liming, aim to produce safe sewage sludge products suitable for agronomic use.</p><p>This incubation study investigated the effects of municipal sewage sludge (stabilized by alternative and common methods) on nutrient and microbial dynamics in two soils; an acidic (pH 5) and an alkaline (pH 8). Stabilized sewage sludge (Thessaloniki WWTP, Greece) with clay minerals (bentonite and vermiculite), biochar (pine residues), Ca(OH)<sub>2</sub> and air-drying, was applied at 1% and 3% dw, in soil mesocosms (300 g). Non-amended soils were also included as control. Soils were incubated (15 days; 25<sup>o</sup>C) and equilibrated with periodic wetting and air-drying. Then, chemical soil properties, heavy metal concentrations and microbial abundance were determined using standard methods.</p><p>Treated sewage sludge addition in the acidic soil, noticeably increased soil pH (pH 5.2 – 8.5), compared to the control treatment (pH 5.0). In the alkaline soil, pH remained at similar levels (pH 8.1 – 8.6). Interestingly, EC increased from 0.42 up to 4.10 and 0.80 up to 3.08 dS m-1 for the acidic and alkaline soils, respectively. The C/N ratio was approx. 10 for all treatments, except biochar (C/N=16). Higher NO<sub>3</sub><sup>-</sup> concentrations were observed for (CaOH)<sub>2</sub>, biochar and vermiculite stabilized sewage sludge treatments, and higher NH<sub>4</sub><sup>+</sup> concentrations were observed for air-dried, bentonite and vermiculite stabilized sewage sludge treatments, in both soils, when compared to the control. Heavy metal concentration increased in all treatments, yet, it remained below legislative critical levels. Sewage sludge amendment increased total heterotroph abundance in all treatments (5.4 – 7.5 log<sub>10</sub> CFU g<sup>-1</sup>) compared to the control. Antibiotic resistant prokaryote abundance ranged between 3.9 – 7.0 log<sub>10</sub> CFU g<sup>-1</sup> and no persistent pattern was found. Pathogens remained below legislative critical levels in all treatments.</p><p>Our preliminary results show that stabilized sewage sludge has the potential to be a safe soil conditioner and fertilizer under the framework of Cyclic Economy and EU Green Deal. A desirable increase in soil fertility and organic C was observed for both soils, and an advantageous pH increase for acidic soil. Though, care should be taken not to exceed EC>2 dS m<sup>-1</sup> when amending agricultural soils with sewage sludge products. Also, further experimentation is required to understand the effects of soil amendments on plant nutrition and productivity.</p><p> </p><p>Funding Acknowledgement: The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: HFRI-FM17-1907).</p>

1997 ◽  
Vol 24 (1) ◽  
pp. 17-19 ◽  
Author(s):  
M-Y. Shim ◽  
J. L. Starr

Abstract The effect of soil pH on sclerotial germination and pathogenicity of two isolates of Sclerotium rolfsii on peanut was examined. Sclerotial germination for both isolates was greater (P ≤ 0.05) in acidic soil than at alkaline pHs. Similarly, percentage of peanut stems infected by S. rolfsii in greenhouse tests was greater at soil pH 5.6 than at alkaline soil pHs (P ≤ 0.05), but disease did develop at soil pH 8.7 and 9.8. In contrast to a previous in vitro study, these data confirm that sclerotia of S. rolfsii will germinate and initiate disease at soil pH > 7.0.


Soil Research ◽  
2005 ◽  
Vol 43 (7) ◽  
pp. 853 ◽  
Author(s):  
R. W. McDowell

Phosphorus (P) loss from soils can impair surface water quality. A study was conducted to test the efficacy of fly-ash to decrease phosphorus loss in 11 grassland soils. A preliminary toxicity and leaching experiment indicated that heavy metal concentrations (As, Cd, Pb, Se) in leachate and pasture from a soil treated with ash up to 50 mg/kg were not different from the control (unamended soil). Heavy metal concentrations in the ash were generally below limits for maximum concentrations in soil. Following incubation of fly ash at a rate of 20 mg/kg for 3 months with 11 grassland soils packed into boxes, overland flow was generated by simulated rainfall on each boxed soil. Analysis of overland flow indicated that in 2 semi-arid soils, P loss decreased due to decreased particulate P (PP) loss and low organic C concentration (<20 g/kg) that facilitated soil dispersion and slaking and increased soil strength. However, in 4 other soils (including 3 volcanic-ash soils with organic C >70 g/kg), P loss increased due to increased soil pH from 6 to 7 where P is most soluble. In all soils, despite an increase in P in recalcitrant soil P fractions, increased soil pH stimulated soil C and P mineralisation (decreased organic C by, on average, 4.1 g/kg), decreased soil organic P, and increased inorganic P in labile fractions. It is concluded that the application of fly-ash from this source should not be used as an amendment to decrease P loss in pastures where soil pH is commonly <6.0, but could provide useful both as a supplement to lime and in mitigating P loss in cropping soils.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 21 (4) ◽  
pp. 1785-1799
Author(s):  
Péter Sipos ◽  
Viktória Kovács Kis ◽  
Réka Balázs ◽  
Adrienn Tóth ◽  
Tibor Németh

Abstract Purpose The close association of Fe-oxyhydroxides and clay minerals might influence the sorption properties of these components. We aimed to study the effect of removing the pedogenic Fe-oxyhydroxides on the sorption of Cd, Cu, Pb, and Zn by the clay mineral particles in soils with contrasting pH. Methods Competitive batch sorption experiments before and after Fe-oxyhydroxide extraction in soils were carried out together with the direct analysis of the metal sorption on individual particles of ferrihydrite, smectite, and illite/smectite by TEM. Results Ferrihydrite was a more effective metal sorbent than clay minerals, although its removal resulted in decreased sorption only for Cd, Cu, and Zn. Ferrhydrite coating blocked metals’ access for certain sorption sites on clay surfaces, which were only accessible for Pb as the most efficient competitor after removing the coating. This observation was the most remarkable for the smectite particles in the alkaline soil. Mineral surfaces sorbed higher Cu than Pb concentrations and higher Zn than Cd concentrations despite the former metals’ lower bulk sorption. Thus, organic surfaces and precipitation contributed to Pb and Cd’s retention to a greater extent than for Cu and Zn. The structural Fe of smectite also promoted the metal sorption in both soils. Conclusion Removal of iron-oxyhydroxide coatings from the soil affects metal sorption selectively. Direct study of metal sorption on individual soil particles enables us to gain a more in-depth insight into soil minerals’ role in this process.


1987 ◽  
Vol 33 (6) ◽  
pp. 551-554 ◽  
Author(s):  
Ken F. Jarrell ◽  
Michelle Saulnier ◽  
Art Ley

The effect of ammonium chloride, sodium butyrate, sodium propionate, and the heavy metals nickel, zinc, and copper on methanogenesis by pure cultures of Methanospirillum hungatei, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium formicicum at pH 6.5 was studied. The latter three strains were resistant to > 60 g/L of the volatile fatty acids and to > 10 g/L of NH3 N. Methanospirillum hungatei was somewhat more sensitive with 50% inhibition of methanogenesis occurring at 4.2 g/L NH3 N, 27 g/L butyrate, and 41 g/L propionate. All strains were very sensitive to both copper (1–5 mg/L) and zinc (1–10 mg/L), but much more resistant to nickel. Zinc and copper concentrations 30 to 270 times higher were required to cause inhibition of Msp. hungatei incubated in sewage sludge compared with buffer, indicating a strong protective environment was afforded the methanogens against heavy metal toxicity in the sludge.


2006 ◽  
Vol 42 (6) ◽  
pp. 569-576 ◽  
Author(s):  
Jacqui Horswell ◽  
Hedda J. Weitz ◽  
Harry J. Percival ◽  
Tom W. Speir

Sign in / Sign up

Export Citation Format

Share Document