scholarly journals Effect of pedogenic iron-oxyhydroxide removal on the metal sorption by soil clay minerals

2021 ◽  
Vol 21 (4) ◽  
pp. 1785-1799
Author(s):  
Péter Sipos ◽  
Viktória Kovács Kis ◽  
Réka Balázs ◽  
Adrienn Tóth ◽  
Tibor Németh

Abstract Purpose The close association of Fe-oxyhydroxides and clay minerals might influence the sorption properties of these components. We aimed to study the effect of removing the pedogenic Fe-oxyhydroxides on the sorption of Cd, Cu, Pb, and Zn by the clay mineral particles in soils with contrasting pH. Methods Competitive batch sorption experiments before and after Fe-oxyhydroxide extraction in soils were carried out together with the direct analysis of the metal sorption on individual particles of ferrihydrite, smectite, and illite/smectite by TEM. Results Ferrihydrite was a more effective metal sorbent than clay minerals, although its removal resulted in decreased sorption only for Cd, Cu, and Zn. Ferrhydrite coating blocked metals’ access for certain sorption sites on clay surfaces, which were only accessible for Pb as the most efficient competitor after removing the coating. This observation was the most remarkable for the smectite particles in the alkaline soil. Mineral surfaces sorbed higher Cu than Pb concentrations and higher Zn than Cd concentrations despite the former metals’ lower bulk sorption. Thus, organic surfaces and precipitation contributed to Pb and Cd’s retention to a greater extent than for Cu and Zn. The structural Fe of smectite also promoted the metal sorption in both soils. Conclusion Removal of iron-oxyhydroxide coatings from the soil affects metal sorption selectively. Direct study of metal sorption on individual soil particles enables us to gain a more in-depth insight into soil minerals’ role in this process.

2003 ◽  
Vol 60 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Adriana Marlene Moreno Pires ◽  
Maria Emília Mattiazzo

Sewage treatment process is a factor to be considered for biosolid use in agriculture. The greatest sewage treatment facility of São Paulo State (Barueri/SP) altered in the year 2000 of its sludge treatment. The addition of ferric chloride and calcium oxide was substituted by the addition of polymers. This change can modify heavy metal phytoavailability. A green house experiment, using 2 soils treated with biosolids (three with and one without polymers with and without polymers) was performed to evaluate Cu and Zn phytoavailability using rice (Oryza sativa L.) as test plant. Three kilograms of two soils (Haphorthox abd Hapludox) were placed in pots and the equivalent to 50 Mg ha-1 (dry basis) of biosolid was added and incorporated. The statistical design adopted was completely randomized experiment, with five treatments (control plus four different biossolids) each soil and four replications. Soil pH before and after harvesting, Cu and Zn concentrations in shoot were evaluated. Tukey (5%) was used to compare the results. DTPA, HCl 0.1 mol L-1 and Mehlich 3 were used to estimate soil available Cu and Zn. Amounts extracted were correlated to those presented in rice shoot, to evaluate the efficiency of predicting Cu and Zn phytoavailabilities. Biosolids with polymers presented higher Cu and Zn phytoavailabilities, possibly due to the lower pH of these residues. In this case soil presented lowest values of pH and plant shoot had highest. All extractants were representative of Cu and Zn availability to rice plants.


2021 ◽  
Author(s):  
Georgios Giannopoulos ◽  
Anastasia-Garyfallia Karagianni ◽  
Athanasios Balidakis ◽  
Ioannis Ipsilantis ◽  
Theodora Matsi

<p>Sewage sludge production from wastewater treatment plants (WWTP) progressively exceeds 60 Million m<sup>3</sup> p.a. in the EU. Although it is rich in organic matter (OM) and essential nutrients for crop production, sewage sludge is mainly disposed in landfills. Under the framework of Cyclic Economy and EU Green Deal, sewage sludge represents an ideal soil amendment and fertilizer with a potential to increase soil OM, provide nutrients and reduce chemical fertilization. Nonetheless, its agronomic use comes with limitations due to the presence of heavy metals and pathogenic microorganisms. Several stabilization technologies, including composting, thermal treatment and liming, aim to produce safe sewage sludge products suitable for agronomic use.</p><p>This incubation study investigated the effects of municipal sewage sludge (stabilized by alternative and common methods) on nutrient and microbial dynamics in two soils; an acidic (pH 5) and an alkaline (pH 8). Stabilized sewage sludge (Thessaloniki WWTP, Greece) with clay minerals (bentonite and vermiculite), biochar (pine residues), Ca(OH)<sub>2</sub> and air-drying, was applied at 1% and 3% dw, in soil mesocosms (300 g). Non-amended soils were also included as control. Soils were incubated (15 days; 25<sup>o</sup>C) and equilibrated with periodic wetting and air-drying. Then, chemical soil properties, heavy metal concentrations and microbial abundance were determined using standard methods.</p><p>Treated sewage sludge addition in the acidic soil, noticeably increased soil pH (pH 5.2 – 8.5), compared to the control treatment (pH 5.0). In the alkaline soil, pH remained at similar levels (pH 8.1 – 8.6). Interestingly, EC increased from 0.42 up to 4.10 and 0.80 up to 3.08 dS m-1 for the acidic and alkaline soils, respectively. The C/N ratio was approx. 10 for all treatments, except biochar (C/N=16). Higher NO<sub>3</sub><sup>-</sup> concentrations were observed for (CaOH)<sub>2</sub>, biochar and vermiculite stabilized sewage sludge treatments, and higher NH<sub>4</sub><sup>+</sup> concentrations were observed for air-dried, bentonite and vermiculite stabilized sewage sludge treatments, in both soils, when compared to the control. Heavy metal concentration increased in all treatments, yet, it remained below legislative critical levels. Sewage sludge amendment increased total heterotroph abundance in all treatments (5.4 – 7.5 log<sub>10</sub> CFU g<sup>-1</sup>) compared to the control. Antibiotic resistant prokaryote abundance ranged between 3.9 – 7.0 log<sub>10</sub> CFU g<sup>-1</sup> and no persistent pattern was found. Pathogens remained below legislative critical levels in all treatments.</p><p>Our preliminary results show that stabilized sewage sludge has the potential to be a safe soil conditioner and fertilizer under the framework of Cyclic Economy and EU Green Deal. A desirable increase in soil fertility and organic C was observed for both soils, and an advantageous pH increase for acidic soil. Though, care should be taken not to exceed EC>2 dS m<sup>-1</sup> when amending agricultural soils with sewage sludge products. Also, further experimentation is required to understand the effects of soil amendments on plant nutrition and productivity.</p><p> </p><p>Funding Acknowledgement: The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: HFRI-FM17-1907).</p>


Author(s):  
Vlad Petre Glăveanu ◽  
Maciej Karwowski ◽  
Dorota M. Jankowska ◽  
Constance de Saint-Laurent

This chapter focuses on the relationship between imagination and creativity as reflected in the study of creative imagination. It is argued that, in order to appreciate today’s close association between imagination and creativity, we need first to consider the intellectual trajectory of these concepts before and after the advent of “scientific” psychology. Using sociocultural perspectives in psychology, the authors challenge the easy assumption that creative imagination is all about generating new, original, or vivid images and, following the legacy of Vygotsky, they conceive of creative imagination as both grounded in and constructive of experience. They use three simple illustrations of children making drawings of Victory to introduce and discuss, comparatively, three sociocultural approaches to (creative) imagination: the gap-filling, the loop, and the perspectival models. The authors conclude by raising new questions about imagination as a cultural, developmental, and creative process.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 229-236 ◽  
Author(s):  
KS Sakariassen ◽  
M Cattaneo ◽  
A v.d. Berg ◽  
ZM Ruggeri ◽  
PM Mannucci ◽  
...  

Abstract The effect of intravenous 1-deamino (8-D-arginine)vasopressin (DDAVP) administration on platelet interaction with human artery subendothelium was investigated with flowing blood from five normal individuals and 12 patients with von Willebrand's disease (vWD). Three of the patients were diagnosed as vWD subtype I, four as subtype IIa, and five as subtype IIb. DDAVP administration to normals enhanced platelet adherence, in parallel with increasing plasma levels of factor VIII- related antigen ( FVIIIR :Ag) and ristocetin cofactor activity ( FVIIIR :RCF). Platelet aggregate formation was transiently increased within 90 minutes. Platelet adherence in patient blood before DDAVP infusion was subnormal. In patients with subtype I, administration of DDAVP normalized the bleeding time, enhanced the platelet adherence, and transiently improved the platelet aggregate formation. The platelet adherence was more corrected than would have been expected on the basis of the FVIIIR :Ag and FVIIIR :RCF levels. In patients with subtype IIa, infusion of DDAVP increased the FVIIIR :Ag levels approximately threefold, without affecting the FVIIIR :RCF levels, and in only two of four patients was a transiently enhanced platelet adherence with a corresponding shortening of the bleeding time observed. In patients with subtype IIb, administration of DDAVP increased the FVIIIR :Ag levels about threefold and the FVIIIR :RCF levels five to tenfold, but decreased the platelet adherence significantly. The bleeding time values were not normalized. A close association between the bleeding time values and corresponding platelet adherence values before and after DDAVP infusion was observed. Normalization of the bleeding time was paralleled with normalization of platelet adherence. We conclude that DDAVP improves the primary hemostasis by causing enhanced FVIII- vWF-mediated platelet adherence. DDAVP has little or no effect on the bleeding time in patients with subtype IIa and subtype IIb, because the platelet adherence is not normalized.


2018 ◽  
Vol 25 (6) ◽  
pp. 1736-1744 ◽  
Author(s):  
Jörg Prietzel ◽  
Wantana Klysubun

Phosphorus (P) K-edge X-ray absorption near-edge structure (XANES) spectra of orthophosphate (oPO4) bound to soil FeIII minerals (e.g. ferrihydrite, goethite) show a pre-edge signal at 2148–2152 eV. It is unknown whether organic P bound to FeIII oxyhydroxides also show this feature. Otherwise, Fe-bound soil P may be underestimated by P K-edge XANES spectroscopy, because a large portion of Fe oxyhydroxide-bound P in soils is organic P. K-edge XANES spectra were obtained for different organic P compounds present in soils [inositol hexaphosphate (IHP), glucose-6-phosphate (G6P), adenosine triphosphate (ATP)] after sorption to ferrihydrite or goethite and compared with spectra of oPO4 adsorbed to these minerals. P sorption to ferrihydrite increased in the sequence IHP ≪ G6P < oPO4 < ATP. P sorption to goethite increased in the sequence G6P < oPO4 ≪ ATP = IHP. Pre-edge signals in P K-edge XANES spectra of organic P adsorbed to Fe oxyhydroxides were markedly smaller compared with those of oPO4 adsorbed to these minerals and absent for FeIII oxyhydroxide-bound ATP as well as goethite-bound IHP. Linear combination fitting (LCF) performed on spectra of IHP, G6P or ATP adsorbed to ferrihydrite or goethite, using only spectra of FeIII oxyhydroxide-bound oPO4 as reference compounds for Fe-bound P, erroneously assigned >93% (ferrihydrite) or >41% (goethite) of Fe-bound P to non-Fe-bound P species. Inclusion of FeIII oxyhydroxide-bound IHP as reference compounds markedly increased the recovery of oxyhydroxide-bound organic P. Thus, Fe-bound soil P has probably often been underestimated by LCF in soil XANES studies where IHP adsorbed to ferrihydrite and to goethite were not included as reference compounds.


1991 ◽  
Vol 35 (1) ◽  
pp. 116-129 ◽  
Author(s):  
Charles E. Jones

AbstractThe characteristics of a new type of rock varnish from the hyperarid coastal deserts of northern Peru, combined with laboratory experiments on associated soil materials, provide new insights into the formation of rock varnish. The Peruvian varnish consists of an Fe-rich, Mn-poor component covering up to 95% of a varnished surface and a Fe-rich, Mn-rich component found only in pits and along cracks and ridges. The alkaline soils plus the catalytic Fe oxyhydroxides that coat much of the varnish surfaces make the Peruvian situation ideal for physicochemical precipitation of Mn. However, the low Mn content of the dominant Fe-rich, Mn-poor component suggests that such precipitation is minor. This, plus the presence of abundant bacteria in the Mn-rich varnish and the recorded presence of Mn-precipitating bacteria in varnish elsewhere, suggests that bacteria are almost solely responsible for Mn-precipitation in rock varnish. A set of experiments involving Peruvian soil samples in contact with water-CO2 solutions indicates that natural fogs or dews release Mn but not Fe when they come in contact with eolian materials on rock surfaces. This mechanism may efficiently provide Mn to bacteria on varnishing surfaces. The lack of Fe in solution suggests that a large but unknown proportion of Fe in varnish may be in the form of insoluble Fe oxyhydroxides sorbed onto the clay minerals that form the bulk of rock varnish. The results of this study do not substantively change R. I. Dorn's paleoenvironmental interpretations of varnish Mn:Fe ratios, but they do suggest areas for further inquiry.


2020 ◽  
Author(s):  
Eyal Ben Dor ◽  
Gila Notesko ◽  
Shahar Weksler

&lt;p&gt;Soil mineralogy holds important information on the soil origin and development. Most common minerals in soils&amp;#8212;quartz, clay minerals and carbonates&amp;#8212;present fundamental spectral features in the longwave infrared (LWIR) region (8.0&amp;#8211;12 &amp;#956;m range), whereas quartz is featureless in the optical region (0.4&amp;#8211;2.5 &amp;#956;m range). A procedure for determining the soil surface mineralogy from hyperspectral LWIR data was used to assess the interaction with desert dust particles that accumulate on the soil surface during dust storms. Ground- and field-based hyperspectral LWIR images of different types of Israeli soils, before and after dispersion of desert dust-like material on the surface, were acquired with the Telops Hyper-Cam sensor, to calculate the surface emissivity spectra of soils, representing the surface mineralogy. Identifying mineral-related emissivity features and calculating their relative intensities, using two created indices&amp;#8213;SQCMI (Soil Quartz Clay Mineral Index) and SCI (Soil Carbonate Index)&amp;#8213;enabled determining the content of quartz, clay minerals, and carbonates in the soil in a semi-quantitative manner&amp;#8212;from more to less abundant, and identifying changes in their abundance resulting from the dispersion of dust on the surface. The dust affected the mineral-related spectral features of the soil surface, depending on the mineral composition of the dust compared to soil surface mineralogy, and its amount. The ability to detect minor mineralogical changes on the soil surface using high spectral resolution LWIR data was demonstrated.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document