Measurements of atmospheric halogenated organic compounds during polar night

Author(s):  
Katarina Abrahamsson ◽  
Patric Simoes Pereira ◽  
Adela Dumitrascu ◽  
Carlos A. Cuevas ◽  
Alfonso Saiz-Lopez

<p>A number of volatile halogenated organic compounds (halocarbons) have been shown to be emitted from the oceans and more lately from sea ice. Several of these contribut to halogens to the troposphere which are involved in a number of atmospheric processes amongst these the destruction of ozone and the speciation of mercury. Historically, most measurements in the Arctic has been performed during summer conditions, but no campaign to the high Arctic has been performed during winter time.</p><p>Here we present the first suite of measurements of halocarbons in air and surface water during polar night during the MOSAiC (Multi-disciplinary Drifting Observatory for the Study of the Arctic Climate) expedition from October 2019 to May 2020. Comparisons will be made with measurements during summer in August 2018.</p>

2019 ◽  
Author(s):  
Moya L. Macdonald ◽  
Jemma L. Wadham ◽  
Dickon Young ◽  
Chris R. Lunder ◽  
Ove Hermansen ◽  
...  

Abstract. The Arctic is one of the most rapidly warming regions of the Earth, with predicted temperature increases of 5–7 °C and the accompanying extensive retreat of Arctic glacial systems by 2100. This will reveal new proglacial land surfaces for microbial colonisation, ultimately succeeding to tundra over decades to centuries. An unexplored dimension to these changes is the impact upon the emission and consumption of halogenated organic compounds (halocarbons) from proglacial land surfaces. Halocarbons are involved in several important atmospheric processes, including ozone destruction, and despite considerable research, uncertainties remain in the natural cycles of some of these compounds. Using flux chambers, we measured halocarbon fluxes from proglacial land surfaces spanning recently-exposed sediments (


2019 ◽  
Vol 19 (11) ◽  
pp. 7667-7690 ◽  
Author(s):  
Moshe Shechner ◽  
Alex Guenther ◽  
Robert Rhew ◽  
Asher Wishkerman ◽  
Qian Li ◽  
...  

Abstract. Volatile halogenated organic compounds (VHOCs), such as methyl halides (CH3X; X is Br, Cl and I) and very short-lived halogenated substances (VSLSs; bromoform – CHBr3, dibromomethane – CH2Br2, bromodichloromethane – CHBrCl2, trichloroethylene – C2HCl3, chloroform – CHCl3 – and dibromochloromethane – CHBr2Cl) are well known for their significant influence on ozone concentrations and oxidation capacity of the troposphere and stratosphere and for their key role in aerosol formation. Insufficient characterization of the sources and the emission rate of VHOCs limits our ability to understand and assess their impact in both the troposphere and stratosphere. Over the last two decades, several natural terrestrial sources for VHOCs, including soil and vegetation, have been identified, but our knowledge of emission rates from these sources and their responses to changes in ambient conditions remains limited. Here we report measurements of the mixing ratios and fluxes of several chlorinated and brominated VHOCs from different landscapes and natural and agricultural vegetated sites at the Dead Sea during different seasons. Fluxes were generally positive (emission into the atmosphere), corresponding to elevated mixing ratios, but were highly variable. Fluxes (and mixing ratios) for the investigated VHOCs ranged as follows: CHBr3 from −79 to 187 nmol m−2 d−1 (1.9 to 22.6 pptv), CH2Br2 from −55 to 71 nmol m−2 d−1 (0.7 to 19 pptv), CHBr2Cl from −408 to 768 nmol m−2 d−1 (0.4 to 11 pptv), CHBrCl2 from −29 to 45 nmol m−2 d−1 (0.5 to 9.6 pptv), CHCl3 from −577 to 883 nmol m−2 d−1 (15 to 57 pptv), C2HCl3 from −74 to 884 nmol m−2 d−1 (0.4 to 11 pptv), methyl chloride (CH3Cl) from -5300 to 10,800 nmol m−2 d−1 (530 to 730 pptv), methyl bromide (CH3Br) from −111 to 118 nmol m−2 d−1 (7.5 to 14 pptv) and methyl iodide (CH3I) from −25 to 17 nmol m−2 d−1 (0.4 to 2.8 pptv). Taking into account statistical uncertainties, the coastal sites (particularly those where soil is mixed with salt deposits) were identified as sources of all VHOCs, but this was not statistically significant for CHCl3. Further away from the coastal area, the bare soil sites were sources for CHBrCl2, CHBr2Cl, CHCl3, and probably also for CH2Br2 and CH3I, and the agricultural sites were sources for CHBr3, CHBr2Cl and CHBrCl2. In contrast to previous reports, we also observed emissions of brominated trihalomethanes, with net molar fluxes ordered as follows: CHBr2Cl > CHCl3 > CHBr3 > CHBrCl2 and lowest positive flux incidence for CHCl3 among all trihalomethanes; this finding can be explained by the soil's enrichment with Br. Correlation analysis, in agreement with recent studies, indicated common controls for the emission of CHBr2Cl and CHBrCl2 and likely also for CHBr3. There were no indications for correlation of the brominated trihalomethanes with CHCl3. Also in line with previous reports, we observed elevated emissions of CHCl3 and C2HCl3 from mixtures of soil and different salt-deposited structures; the flux correlations between these compounds and methyl halides (particularly CH3I) suggested that at least CH3I is also emitted via similar mechanisms or is subjected to similar controls. Overall, our results indicate elevated emission of VHOCs from bare soil under semiarid conditions. Along with other recent studies, our findings point to the strong emission potential of a suite of VHOCs from saline soils and salt lakes and call for additional studies of emission rates and mechanisms of VHOCs from saline soils and salt lakes.


1978 ◽  
Vol 11 (5) ◽  
pp. 437-448 ◽  
Author(s):  
G. J. Piet ◽  
P. Slingerland ◽  
F. E. De Grunt ◽  
M. P. M. Heuvel ◽  
B. C. J. Zoeteman

2014 ◽  
Vol 16 (11) ◽  
pp. 2592-2603 ◽  
Author(s):  
Gregor Kos ◽  
Visahini Kanthasami ◽  
Nafissa Adechina ◽  
Parisa A. Ariya

Concurrent measurements of aromatic, oxygenated and halogenated VOC in the High-Arctic snow pack and air with solid-phase microextraction gas chromatography.


2002 ◽  
Vol 120 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Christopher M. Reddy ◽  
Li Xu ◽  
Timothy I. Eglinton ◽  
Jan P. Boon ◽  
D.John Faulkner

1981 ◽  
Vol 20 (3) ◽  
pp. 205-215 ◽  
Author(s):  
Elizabeth Baumann Ofstad ◽  
Hilde Drangsholt ◽  
Georg E. Carlberg

Sign in / Sign up

Export Citation Format

Share Document