ozone destruction
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 0)

Author(s):  
Andrey Pershin ◽  
Valeriy Azyazov ◽  
Aleksei P Torbin ◽  
Paul A. Mikheyev ◽  
Alexander M. Mebel ◽  
...  

2021 ◽  
Author(s):  
James Roberts ◽  
Siyuan Wang ◽  
Patrick Veres ◽  
J. Andrew Neuman ◽  
Hannah Allen ◽  
...  

<p>Bromine activation (the production of Br in an elevated oxidation state) represents a mechanism for ozone destruction and mercury removal in the global troposphere, and has been a common feature of both polar boundary layers, often accompanied by nearly complete ozone destruction. The chemistry and budget of active bromine compounds (e.g. Br<sub>2</sub>, BrCl, HOBr) reflects the cycling of Br and ultimately its impact on the environment. Cyanogen bromide (BrCN) has recently been measured by iodide ion high resolution time-of-flight mass spectrometry (I<sup>-</sup> CIMS) during the NASA Atmospheric Tomography mission, and could be a previously unquantified participant in active Br chemistry. BrCN mixing ratios ranged from below detection limit (1.5pptv) up to as high as 48 pptv (10sec avg) and enhancements were almost exclusively confined to the polar boundary layers (PBL). Likely BrCN formation pathways involve the reactions of active Br (Br<sub>2</sub>, HOBr) with reduced nitrogen compounds. Gas phase loss processes due to reaction with radical species are likely quite slow and photolysis is known to be relatively slow. These features, and the lack of BrCN enhancements above the PBL, imply that surface reactions must be the major loss processes. Known liquid phase reactions of BrCN result in the conversion of the Br to bromide (Br<sup>-</sup>) or formation of C-Br bonded organic species, hence a loss of atmospheric active Br from that chemical cycle. Thus, accounting for the chemistry of BrCN will be an important aspect of understanding polar Br cycling.</p>


2021 ◽  
Author(s):  
Florence Goutail ◽  
Andrea Pazmino ◽  
Jean-Pierre Pommereau ◽  
Franck Lefevre ◽  
Sophie Godin-Beekmann ◽  
...  

<p>Ozone depletion over Polar Regions is monitored each year by satellite and ground-based instruments. The first signs of healing of the ozone layer linked to the decrease of ozone destructive substances (ODSs) were observed in Antarctica using different metrics (ozone mean values, ozone mass deficit, area of the ozone hole) and simple or sophisticated models. Chemistry climate models predict that climate change will not affect expected ozone recovery over Antarctica but will accelerate recovery in the Arctic due to the possible enhancement of the Brewer Dobson circulation. However, ozone loss observations by SAOZ UV-Vis spectrometers do not show a clear sign of recovery in the latter region. In addition, a record of 38% ozone loss in 2010/2011 and 2019/2020 was estimated.</p><p>In this study, the vortex-averaged ozone loss in the last three decades will be evaluated for both Polar Regions using the passive ozone tracer of two chemical transport models (REPROBUS and SLIMCAT CTMs) and total ozone observations from SAOZ and satellite observations (IASI/METOP and Multi-Sensor Reanalysis (MSR-2)).</p><p>The tracer method allows us to determine the evolution of the daily rate of ozone destruction, and the amplitude of the cumulative loss at the end of the winter. The cumulative ozone destruction in the Artic varies between 0-10% in relatively warm winters with short vortex duration to up to 25-38% in colder winters with longer vortex persistence, while in Antarctica it is mostly stable, around 50%.</p><p>Interannual variability of 10-days average rate will be analyzed and compared between both hemispheres as well as the timing to reach different thresholds of absolute ozone loss values. Finally, linear trend of ozone loss and temperature since 2000 will be estimated in both Polar Regions in order to evaluate possible ozone recovery.</p>


2021 ◽  
Vol 21 (4) ◽  
pp. 2819-2836
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley A. Walker

Abstract. We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO, and ClONO2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SCISAT, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, covering the period from 2005 to 2017. Using the geomagnetic activity index Ap as a proxy for EPP, we find consistent ozone increases with elevated EPP during years with an easterly phase of the quasi-biennial oscillation (QBO) in both OMI and MLS observations. While these increases are the opposite of what has previously been reported at higher altitudes, the pattern in the MLS O3 follows the typical descent patterns of EPP-NOx. The ozone enhancements are also present in the OMI total O3 column observations. Analogous to the descent patterns found in O3, we also found consistent decreases in springtime MLS ClO following winters with elevated EPP. To verify if this is due to a previously proposed mechanism involving the conversion of ClO to the reservoir species ClONO2 in reaction with NO2, we used ClONO2 observations from ACE-FTS and MIPAS. As ClO and NO2 are both catalysts in ozone destruction, the conversion to ClONO2 would result in an ozone increase. We find a positive correlation between EPP and ClONO2 in the upper stratosphere in the early spring and in the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP-NOx modulating Clx-driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective, and catalytic ozone destruction by EPP-NOx will likely become a major contributor to Antarctic ozone loss.


2021 ◽  
Vol 21 (4) ◽  
pp. 2427-2455
Author(s):  
Sabine Robrecht ◽  
Bärbel Vogel ◽  
Simone Tilmes ◽  
Rolf Müller

Abstract. The potential of heterogeneous chlorine activation in the midlatitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough to cause the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future global warming and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process. We investigate the likelihood of the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost-stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6–49.6∘ N, 72.25–124.75∘ W) in summer for conditions today, at the middle and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost-stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10-day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: the RCP8.5 global warming scenario and a geoengineering scenario, where sulfur is additionally injected into the stratosphere to keep the global mean surface temperature from changing. In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood of chlorine activation occurring in the mixing layer is highest in the years 2040–2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood of conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process occurring decreases. We found that 0.1 % of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3 % in the mixing layer occurs in the years 2040–2050 if geoengineering is applied. Comparing the southernmost latitude band (30–35∘ N) and the northernmost latitude band (44–49∘ N) of the considered region, we found a higher likelihood of the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the midlatitude ozone column.


Author(s):  
Christian Matthaei ◽  
Deb Pratim mukhopadhyay ◽  
Anja Röder ◽  
Lionel Poisson ◽  
Ingo Fischer

Halogen-containing radicals play a key role in catalytic reactions leading to stratospheric ozone destruction, thus their photochemistry is of considerable interest. Here we investigate the photodissociation dynamics of the trichloromethyl...


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

An exceptionally strong stratospheric polar vortex coincided with a record-breaking Arctic Oscillation pattern and ozone destruction during the 2019–2020 winter season.


2020 ◽  
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley A. Walker

Abstract. We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO and ClONO2 in the Antarctic springtime. We use observations from Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SciSat, and Michelson Interferometer for Passive Atmospheric Sound (MIPAS) on Envisat, covering the overall period of 2005–2017. Using the Ap index to proxy EPP, we find consistent ozone increases with elevated EPP during years with easterly phase of the quasi biennial oscillation (QBO) in both OMI and MLS observations. While these increases are opposite to what has been previously reported at higher altitudes, the pattern in the MLS O3 follows the typical descent patterns of EPP–NOx. The ozone enhancements are also present in the OMI total O3 column observations. Analogous to the descent patterns found in O3, we also found consistent decreases in springtime MLS ClO following winters of elevated EPP. To verify if this is due to a previously proposed mechanism of conversion of ClO to the reservoir species ClONO2 in reaction with NO2, we used ClONO2 observations from ACE-FTS and MIPAS. As ClO and NO2 are both catalysts in ozone destruction, the conversion into ClONO2 would result in ozone increase. We find a positive correlation between EPP and ClONO2 in the upper stratosphere in the early spring, and the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP–NOx modulating Clx driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective and catalytic ozone destruction by EPP–NOx will likely become a major contributor to Antarctic ozone loss.


2020 ◽  
Author(s):  
Konstantinos Kalamatianos

Accurate calculations of standard molar enthalpies of formation (ΔΗf°)m(g) and carbon-halogen bond dissociation enthalpies, BDE, of a variety of halomethanes with relevance on several atmospheric chemical processes and particularly to ozone destruction, were performed in the gas phase at 298.15 K. The (ΔΗf°)m(g) of the radicals formed through bond dissociations have also been computed. Ab initio computational methods and isodesmic reaction schemes were used. It is found that for the large majority of these species, the gold standard method of quantum chemistry (CCSD(T)) and even MP2 are capable to predict enthalpy values nearing chemical accuracy provided that isodesmic reaction schemes are used. New estimates for standard molar enthalpies of formation and BDE are suggested including for species that to our knowledge there are no experimental (ΔΗf°)m(g) (CHCl2Br, CHBr2Cl, CHBrCl, CHICl, CHIBr) or BDE values (CHCl2Br, CHBr2Cl, CHBrCl, CHICl, CHIBr) available in the literature. The method and calculational procedures presented may profitably be used to obtain accurate (ΔΗf°)m(g) and BDE values for these species.


Sign in / Sign up

Export Citation Format

Share Document