The CORDEX‐Australasia ensemble: evaluation and future projections

Author(s):  
Jason Evans ◽  
Giovanni Di Virgilio ◽  
Annette Hirsch ◽  
Peter Hoffmann ◽  
Armelle Reca Remedio ◽  
...  

<p>The World Climate Research Programme (WCRP) has an international initiative called the COordinated Regional climate Downscaling EXperiment (CORDEX). The goal of the initiative is to provide regionally downscaled climate projections for most land regions of the globe, as a compliment to the global climate model projections performed within the Coupled Model Intercomparison Projects (CMIP). CORDEX includes data from both dynamical and statistical downscaling. It is anticipated that the CORDEX dataset will provide a link to the impacts and adaptation community through its better resolution and regional focus. Participation in CORDEX is open and any researchers performing climate downscaling are encourage to engage with the initiative. Here I present the current status, <span>evaluation and future projections</span> for the CORDEX-AustralAsia <span>ensemble</span>.</p><p>The CORDEX-Australasia ensemble is the largest regional climate projection ensemble ever created for the region. It is a 20-member ensemble made by 6 regional climate models downscaling 11 global climate models. Overall the ensemble produces a good representation of recent climate. Consistent biases within the ensemble include an underestimation of the diurnal temperature range and an underestimation of precipitation across much of southern Australia. Under a high emissions scenario projected temperature changes by the end of the twenty-first century reach ~ 5 K in the interior of Australia with smaller increases found toward the coast. Projected precipitation changes are towards drying, particularly in the most populated areas of the southwest and southeast of the continent. The projected precipitation change is very seasonal with summer projected to see little change leaning toward an increase. These results provide a foundation enabling future studies of regional climate changes, climate change impacts, and adaptation options for Australia.</p>

2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2019 ◽  
Vol 41 (4) ◽  
pp. 374-387 ◽  
Author(s):  
Nguyen Thi Tuyet ◽  
Ngo Duc Thanh ◽  
Phan Van Tan

The study examined the performance of six regional climate experiments conducted under the framework of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment-Southeast Asia (SEACLID/CORDEX-SEA) project and their ensemble product (ENS) in simulating temperature at 2 m (T2m) and rainfall (R) in seven climatic sub-regions of Vietnam. The six experiments were named following the names of their driving Global Climate Models (GCMs), i.e., CNRM, CSIRO, ECEA, GFDL, HADG and MPI. The observation data for the period 1986–2005 from 66 stations in Vietnam were used to compare with the model outputs. Results showed that cold biases were prominent among the experiments and ENS well reproduced the seasonal cycle of temperature in the Northeast, Red River Delta, North Central and Central Highlands regions. For rainfall, all the experiments showed wet biases and CSIRO exhibited the best. A scoring system was elaborated to objectively rank the performance of the experiments and the ENS experiment was reported to be the best.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Leonard Druyan ◽  
Matthew Fulakeza

A prequel study showed that dynamic downscaling using a regional climate model (RCM) over Africa improved the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM: ModelE) simulation of June–September rainfall patterns over Africa. The current study applies bias corrections to the lateral and lower boundary data from the AOGCM driving the RCM, based on the comparison of a 30-year simulation to the actual climate. The analysis examines the horizontal pattern of June–September total accumulated precipitation, the time versus latitude evolution of zonal mean West Africa (WA) precipitation (showing monsoon onset timing), and the latitude versus altitude cross-section of zonal winds over WA (showing the African Easterly Jet and the Tropical Easterly Jet). The study shows that correcting for excessively warm AOGCM Atlantic sea-surface temperatures (SSTs) improves the simulation of key features, whereas applying 30-year mean bias corrections to atmospheric variables driving the RCM at the lateral boundaries does not improve the RCM simulations. We suggest that AOGCM climate projections for Africa should benefit from downscaling by nesting an RCM that has demonstrated skill in simulating African climate, driven with bias-corrected SST.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2020 ◽  
Author(s):  
Raphael Hébert ◽  
Ulrike herzschuh ◽  
Thomas Laepple

<p>Multidecadal to millenial timescale climate variability has been investigated over the ocean</p><p>using extensive proxy data and it was found to yield coherent interproxy estimates of global and regional sea-surface temperature (SST) climate variability (Laepple and Huybers, 2014). Global Climate Model (GCM) simulations on the other hand, were found to exhibit an increasingly large deficit of regional SST climate variability for increasingly longer timescales.</p><p>Further investigation is needed to better quantify terrestrial climate variability for long</p><p>timescales and validate climate models.</p><p>Vegetation related proxies such as tree rings and pollen records are the most widespread</p><p>types of archives available to investigate terrestrial climate variability. Tree ring records are</p><p>particularly useful for short time scales estimates due to their annual resolution, while pollen-based reconstructions are necessary to cover the longer timescales. In the present work, we use a large database of 1873 pollen records covering the northern hemisphere in order to quantify Holocene vegetation and climate variability for the first time at centennial to multi-millenial timescales.</p><p>To ensure the robustness of our results, we are particularly interested in the spatio-temporal representativity of the archived signal in pollen records after taking into account the effective spatial scale, the intermittent and irregular sampling, the age-uncertainty and the sediment mixing effect. A careful treatment of the proxy formation allows us to investigate the spatial correlation structure of the pollen-based climate reconstructions as a function of timescales. The pollen data results are then contrasted with the analysis replicated using transient Holocene simulations produced with state-of-the-art climate models as well as stochastic climate model simulations.Our results indicate a substantial gap in terrestrial climate variability between the climate model simulations and the pollen reconstructions at centennial to multi-millenial timescales, mirroring the variability gap found in the marine domain. Finally, we investigate how future climate model projections with greater internal variability would be affected, and how this increases the uncertainty of regional land temperature projections.</p>


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2015 ◽  
Vol 29 (1) ◽  
pp. 17-35 ◽  
Author(s):  
J. F. Scinocca ◽  
V. V. Kharin ◽  
Y. Jiao ◽  
M. W. Qian ◽  
M. Lazare ◽  
...  

Abstract A new approach of coordinated global and regional climate modeling is presented. It is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2. CanRCM4 was developed specifically to downscale climate predictions and climate projections made by its parent global model. The close association of a regional climate model (RCM) with a parent global climate model (GCM) offers novel avenues of model development and application that are not typically available to independent regional climate modeling centers. For example, when CanRCM4 is driven by its parent model, driving information for all of its prognostic variables is available (including aerosols and chemical species), significantly improving the quality of their simulation. Additionally, CanRCM4 can be driven by its parent model for all downscaling applications by employing a spectral nudging procedure in CanESM2 designed to constrain its evolution to follow any large-scale driving data. Coordination offers benefit to the development of physical parameterizations and provides an objective means to evaluate the scalability of such parameterizations across a range of spatial resolutions. Finally, coordinating regional and global modeling efforts helps to highlight the importance of assessing RCMs’ value added relative to their driving global models. As a first step in this direction, a framework for identifying appreciable differences in RCM versus GCM climate change results is proposed and applied to CanRCM4 and CanESM2.


Author(s):  
Douglas Maraun

Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric processes and small-scale extreme events. To understand potential regional climatic changes, and to provide information for regional-scale impact modeling and adaptation planning, downscaling approaches have been developed. Regional climate change modeling, even though it is still a matter of basic research and questioned by many researchers, is urged to provide operational results. One major downscaling class is statistical downscaling, which exploits empirical relationships between larger-scale and local weather. The main statistical downscaling approaches are perfect prog (often referred to as empirical statistical downscaling), model output statistics (which is typically some sort of bias correction), and weather generators. Statistical downscaling complements or adds to dynamical downscaling and is useful to generate user-tailored local-scale information, or to efficiently generate regional scale information about mean climatic changes from large global climate model ensembles. Further research is needed to assess to what extent the assumptions underlying statistical downscaling are met in typical applications, and to develop new methods for generating spatially coherent projections, and for including process-understanding in bias correction. The increasing resolution of global climate models will improve the representation of downscaling predictors and will, therefore, make downscaling an even more feasible approach that will still be required to tailor information for users.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 699
Author(s):  
Dario Conte ◽  
Silvio Gualdi ◽  
Piero Lionello

This study explores the role of model resolution on the simulation of precipitation and on the estimate of its future change in the Mediterranean region. It compares the results of two regional climate models (RCMs, with two different horizontal grid resolutions, 0.44 and 0.11 degs, covering the whole Mediterranean region) and of the global climate model (GCM, 0.75 degs) that has provided the boundary conditions for them. The regional climate models include an interactive oceanic component with a resolution of 1/16 degs. The period 1960–2100 and the representative concentration pathways RCP4.5 and RCP8.5 are considered. The results show that, in the present climate, increasing resolution increases total precipitation and its extremes over steep orography, while it has the opposite effect over flat areas and the sea. Considering climate change, in all simulations, total precipitation will decrease over most of the considered domain except at the northern boundary, where it will increase. Extreme precipitation will increase over most of the northern Mediterranean region and decrease over the sea and some southern areas. Further, the overall probability of precipitation (frequency of wet days) significantly decreases over most of the region, but wet days will be characterized with precipitation intensity higher than the present. Our analysis shows that: (1) these projected changes are robust with respect to the considered range of model resolution; (2) increasing the resolution (within the considered resolution range) decreases the magnitude of these climate change effects. However, it is likely that resolution plays a less important role than other factors, such as the different physics of regional and global climate models. It remains to be investigated whether further increasing the resolution (and reaching the scale explicitly permitting convection) would change this conclusion.


Sign in / Sign up

Export Citation Format

Share Document