The Effect of Forbush Decreases on Atmospheric Aerosols and Clouds from The PATMOS-x Satellite from 1978 to 2018

Author(s):  
Haruka Matsumoto ◽  
Henrik Svensmark ◽  
Martin Enghoff

<p>The solar system is constantly changing, and it is important for us to understand how our climate and weather changes in response to the solar activity during both long-time scales (e.g. the 11-year solar cycle) and short time scales (e.g. days to weeks during For-bush Decreases (FDs)). Solar variability causes a corresponding modulation of the incident number of cosmic rays in Earth's atmosphere. Previous work by [Veretenenko and Pudovkin, 1997], [Svensmark and Friis-Christensen, 1997], [Palle Bago and Butler, 2000], [Svensmark et al., 2016], [Harrison and Ambaum, 2010], and other researchers have discussed this cause-effect relationship from an experimental and theoretical approach. Since the 1970s, global observations of the Earth's system by satellites are offering an invaluable source of information about cloud parameters.</p><p>In this study, we used the newly calibrated PATMOS-x (Pathfinder Atmospheres Extended) data set during the period from 1978 to the present. A method for capturing the connection between cosmic rays and meteorological measurements has been conducted by superposition analysis of FD events for time series (36 days) and the Monte Carlo bootstrap test to evaluate significance level of the integrated signal for 9 days after the minimum in FD. We have reviewed results, primarily about cloud emissivity (Achieved Significance Level (ASL >99%), surface brightness temperature (ASL >99%), and cloud fraction (ASL >99%). Some of the results support the proposed relationship between solar activity and temperature. This result indicates that the amount of incident cosmic rays decreases due to FDs, global average temperature increases [Friis-Christensen and Lassen, 1991], [Harrison and Ambaum, 2010]. In addition, PATMOS-x parameters of cloud probability, cloud mask, and cloud fraction, which all means cloud coverage on the Earth shows statistically significant signals following FDs. In some previous research, IR-detected cloud fraction from International Satellite Cloud Climate Project (ISCCP) and combined liquid and ice cloud fraction, effective emissivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) also show connection with FDs, see [Svensmark et al., 2009], [Svensmark et al., 2016], [Marsh and Svensmark, 2000a], Todd and Kniveton [2004]. The relationship between the observed changes in cloud amount and the resulting solar forcing is discussed. On the other hand, “Cloud water content" from Special Sensor Microwave Imager (SSM/I), “Liquid water path", and “Optical thickness" from MODIS also showed as significant signals by FDs, see [Svensmark et al., 2009], [Svensmark et al., 2016], however a similar parameter about “optical thickness" and “integrated total cloud water over whole column g/m2" from PATMOS-x dataset does not have high significant signals by a bootstrap test with ASL of 77.03 and 92.51% respectively. Moreover, significant results are reported for several new cloud parameters from the PATMOS-x dataset (e.g. cloud type, brightness temperature, measurements by different wavelength 0.65, 0.86, 3.75, 11.0, and 12.0 μm and others) and Fu-Liou model is used for estimation of changed radiations in the atmosphere. An interaction between CCN and radiation has not been investigated well yet. It is necessary to still more to learn about these results for further understanding of Earth’s atmosphere.</p>

1999 ◽  
Vol 23 (3) ◽  
pp. 471-474 ◽  
Author(s):  
M.V Alania ◽  
E.S Vernova ◽  
M.I Tyasto ◽  
D.G Baranov

2014 ◽  
Vol 7 (11) ◽  
pp. 3873-3890 ◽  
Author(s):  
C. K. Carbajal Henken ◽  
R. Lindstrot ◽  
R. Preusker ◽  
J. Fischer

Abstract. A newly developed daytime cloud property retrieval algorithm, FAME-C (Freie Universität Berlin AATSR MERIS Cloud), is presented. Synergistic observations from the Advanced Along-Track Scanning Radiometer (AATSR) and the Medium Resolution Imaging Spectrometer (MERIS), both mounted on the polar-orbiting Environmental Satellite (Envisat), are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a cloud optical and microphysical property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two cloud top height products are retrieved based on independent techniques. For cloud top temperature, measurements in the AATSR infrared channels are used, while for cloud top pressure, measurements in the MERIS oxygen-A absorption channel are used. Results from the cloud optical and microphysical property retrieval serve as input for the two cloud top height retrievals. Introduced here are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method, which provides uncertainty estimates of the retrieved property on a pixel basis, is presented. Within the frame of the European Space Agency (ESA) Climate Change Initiative (CCI) project, the first global cloud property retrievals have been conducted for the years 2007–2009. For this time period, verification efforts are presented, comparing, for four selected regions around the globe, FAME-C cloud optical and microphysical properties to cloud optical and microphysical properties derived from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite. The results show a reasonable agreement between the cloud optical and microphysical property retrievals. Biases are generally smallest for marine stratocumulus clouds: −0.28, 0.41 μm and −0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root-mean-square deviation. Furthermore, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several Atmospheric Radiation Measurement (ARM) sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations. The lowest bias of −0.3 km is found for AATSR cloud top heights for single-layer clouds, while the highest bias of −3.0 km is found for AATSR cloud top heights for multilayer clouds. Variability is low for MERIS cloud top heights for low-level clouds, and high for MERIS cloud top heights for mid-level and high-level single-layer clouds, as well as for both AATSR and MERIS cloud top heights for multilayer clouds.


2002 ◽  
Vol 22 (3) ◽  
pp. 291-300
Author(s):  
Katya Georgieva ◽  
Boian Kirov ◽  
Atanasov Dimitar

2017 ◽  
Vol 30 (17) ◽  
pp. 6959-6976 ◽  
Author(s):  
Yolanda L. Shea ◽  
Bruce A. Wielicki ◽  
Sunny Sun-Mack ◽  
Patrick Minnis

Cloud response to Earth’s changing climate is one of the largest sources of uncertainty among global climate model (GCM) projections. Two of the largest sources of uncertainty are the spread in equilibrium climate sensitivity (ECS) and uncertainty in radiative forcing due to uncertainty in the aerosol indirect effect. Satellite instruments with sufficient accuracy and on-orbit stability to detect climate change–scale trends in cloud properties will improve confidence in the understanding of the relationship between observed climate change and cloud property trends, thus providing information to better constrain ECS and radiative forcing. This study applies a climate change uncertainty framework to quantify the impact of measurement uncertainty on trend detection times for cloud fraction, effective temperature, optical thickness, and water cloud effective radius. Although GCMs generally agree that the total cloud feedback is positive, disagreement remains on its magnitude. With the climate uncertainty framework, it is demonstrated how stringent measurement uncertainty requirements for reflected solar and infrared satellite measurements enable improved constraint of SW and LW cloud feedbacks and the ECS by significantly reducing trend uncertainties for cloud fraction, optical thickness, and effective temperature. The authors also demonstrate improved constraint on uncertainty in the aerosol indirect effect by reducing water cloud effective radius trend uncertainty.


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


Sign in / Sign up

Export Citation Format

Share Document