Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017

2018 ◽  
Vol 363 (12) ◽  
Author(s):  
Partha Chowdhury ◽  
Karel Kudela
2001 ◽  
Vol 27 (3) ◽  
pp. 595-600 ◽  
Author(s):  
L.I. Dorman ◽  
N. Iucci ◽  
G. Villoresi

2021 ◽  
Vol 7 (1) ◽  
pp. 84-97
Author(s):  
Valery Yanchukovsky

Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.


2021 ◽  
Vol 7 (1) ◽  
pp. 67-77
Author(s):  
Valery Yanchukovsky

Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.


1999 ◽  
Vol 23 (3) ◽  
pp. 471-474 ◽  
Author(s):  
M.V Alania ◽  
E.S Vernova ◽  
M.I Tyasto ◽  
D.G Baranov

2007 ◽  
Vol 25 ◽  
pp. 163-167 ◽  
Author(s):  
Marlos Rockenbach da Silva ◽  
Walter Demetrio Gonzalez Alarcon ◽  
Ezequiel Echer ◽  
Alisson Dal Lago ◽  
Luis Eduardo Antunes Vieira ◽  
...  

2018 ◽  
Vol 56 (2) ◽  
pp. 101-107
Author(s):  
V. P. Okhlopkov
Keyword(s):  

2021 ◽  
Vol 61 (1) ◽  
pp. 6-13
Author(s):  
G. A. Bazilevskaya ◽  
E. I. Daibog ◽  
Yu. I. Logachev ◽  
N. A. Vlasova ◽  
E. A. Ginzburg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document