Geochronology - a suitable tool to discern causality from temporal coincidence?

Author(s):  
Urs Schaltegger

<p>Geoscientists tend to subdivide the system Earth into different subsystems (geosphere, hydrosphere, atmosphere, biosphere), which are interacting with each other in a non-linear way. The quantitative understanding of this interaction is essential to make reconstructions of the geological past. This is mostly done by a linear approach of establishing time-series of chemical and physical proxies, calibrating their contemporaneity through geochronology, and eventually invoke causality. A good example is the comparison of carbon or oxygen isotope time series to the paleo-biodiversity in ancient sedimentary sections, temporally correlated using astrochronology or high-precision U-Pb dating of volcanic zircon in interlayered ash beds. While highly accurate and precise data are necessary to form the basis for linear and non-linear models, we have to be aware that any analysis is the result of an experiment – an isotope-chemical analysis in the U-Pb example - introducing random and non-random noise, which can mimic, disturb, distort or mask non-linear system behavior. High-precision/high-accuracy U-Pb age determination using the mineral zircon (ZrSiO4) and application of the techniques of isotope dilution, thermal ionization mass spectrometry is a good example of such an experiment we apply to the geological history of our planet.</p><p>Two examples where precise U-Pb dating methods are used to link disparate processes are (1) using the duration and the tempo of zircon growth in a magmatic system as a measure for modeling magma flux in space and time, and apply these to infer potential eruptibility and volcanic hazard of a plutonic-volcanic plumbing system; (2) establish absolute age and duration of magma emplacement in large igneous provinces, feed these data into models of volatile injection into and residence of volatile species in the atmosphere, estimate their influence on the inherent parameters of Earth’s climate, and infer causality with climatic, environmental and biotic crises. Both of these are outstanding scientific questions that attract and deserve significant attention by a general as well as academic public. However, insufficient attention is drawn onto the questions of the nature and importance of the noise we add through isotopic age determination.</p><p>There are two prominent issues to be discussed in this context, (1) to what extent (at what precision) can we distinguish natural age variation among zircon grains from random scatter produced by analytical techniques and the complexity of the U-Pb isotopic system in zircon, and (2) how can we correlate the U-Pb dates established for crystallization of zircon in residual and/or assimilated melt portions of mafic magmatic rocks from large igneous provinces to the release and injection of magmatic and contact-metamorphic volatiles into the atmosphere? This contribution intends to demonstrate that analytical scatter and complex system behavior are often confounded with age variation (and vice versa) and will outline new approaches and insights how to quantify their respective contributions.</p>

2004 ◽  
Vol 112 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Andreas Prokoph ◽  
Richard E. Ernst ◽  
Kenneth L. Buchan

Author(s):  
B-B Li ◽  
Z-F Yuan

Analysis of chaotic time series is common in many fields of science and engineering. It arises primarily from massive interactions between the many different parts of a non-linear system or in non-linear physical phenomena that are intrinsically complex. It is important to analyse the time series of these non-linear dynamic systems based on chaos theory. In recent years, many researchers on heart dynamics have demonstrated that chaos really exists in heart movements. In this study the non-linear and chaos characteristics are investigated and the fractal dimensions (FDs) and largest Lyapunov exponents (LLE) of the heart sound time series are calculated. First, the C—C method is used to estimate the time delay and embedding dimensions which are used to reconstruct the phase spaces. Then, the FDs and LLEs of the different heart sound signals are calculated and analysed, including the healthy heart sound, splitting of the second heart sound, mitral incompetence, and abnormal aortic shrinkage. From the results, the non-linear and chaotic characteristics in heart dynamic movement are found, and the results of LLEs show that the healthy heart has more obvious chaotic movements than abnormal movements.


1986 ◽  
Vol 8 ◽  
pp. 141-145 ◽  
Author(s):  
K.C. Partington ◽  
C.G. Rapley

Satellite-borne, radar altimeters have already demonstrated an ability to produce high-precision, topographic maps of the ice sheets. Seasat operated in a tracking mode, designed for use over oceans, but successfully tracked much of the flatter regions of the ice sheet to ± 72° latitude. ERS-1 will extend coverage to ± 82° latitude and will be equipped with an ocean mode similar to that of Seasat and an ice mode designed to permit tracking of the steeper, peripheral regions. The ocean mode will be used over the flatter regions, because of its greater precision.Altimeter performance over the ice sheets has been investigated through a study of Seasat tracking behaviour and the use of an altimeter performance simulator, with a view to assessing the likely performance of ERS-1 and the design of improved tracking systems. Analysis of Seasat data shows that lock was frequently lost, as a result of possessing a non-linear height error signal over the width of the range window. Having lost lock, the tracker frequently failed to transfer rapidly and effectively to track mode. Use of the altimeter performance simulator confirms many of the findings from Seasat data and it is being used to facilitate data interpretation and mapping, through the modelling of waveform sequence.


Sign in / Sign up

Export Citation Format

Share Document