scholarly journals Investigating seismic properties of the NEGIS onset region using ice-drilling noise as a seismic source

Author(s):  
Charlotte Schoonman ◽  
Olaf Eisen ◽  
Coen Hofstede ◽  
Nicolas Stoll ◽  
Steven Franke ◽  
...  

<p>Investigating the physical conditions underlying and enabling fast glacier flow is crucial to understanding the future stability of ice sheets, as well as their impact on future sea-level rise. Seismic surveys have been widely used to measure material properties of the ice and substrate, including seismic velocity structure, anisotropy, and bed properties. While traditional seismic surveys rely on natural seismicity or man-made sources such as explosives, anthropogenic noise generated through ice-core drilling can also be used as a seismic source. Placing geophones around an ice-core drilling site therefore presents an exciting opportunity to complement and extend measurements from ice cores to the surrounding area.</p><p>Here, we present preliminary results from a seismic investigation conducted using noise generated by ice-core drilling activities at the East Greenland Ice Core Project (EGRIP) site. The EGRIP site is located near the onset region of the Northeast Greenland Ice Stream (NEGIS), which drains over 10% of the Greenland Ice Sheet. The ice-core drilling process creates a variety of semi-continuous (e.g., generator-induced) and impulsive (e.g., core break) seismic source signals. As drilling progresses through the ice column, the corresponding variation in seismic signals can be used to generate a vertical profile of seismic properties. In the summer of 2019, nine 3-component surface geophones were deployed at 0, 300, 750, 1500 and 3000 m distance from the drill site along two lines corresponding to the along- and cross-flow directions of the ice stream. The network recorded at a sampling frequency of 400 Hz for 28 days, during which drilling progressed between 1920 and 2110 m depth below the surface. Both continuous and impulsive sources related to the drilling process were recorded at all stations. Impulsive arrivals were identified using STA/LTA phase-picking across multiple components and stations. Because the depth of the drill head at any given time is known, the move-out of each event could then be used to determine the integrated seismic velocity structure along the source-receiver ray path.</p><p>Additionally, sporadic passive microseismic signals resulting from ice stream motion over the bed were observed at all stations. Both individually distinguishable icequakes and 3-5 minute-long “gliding” tremors were recorded, indicative of stick-slip motion at the bed of NEGIS. Further work will concentrate on modelling these tremors to resolve the shear modulus of the substrate, and on incorporating continuous drill-generated noise into our overall analysis. Our approach demonstrates the added value of opportunistic seismic networks as a complement to ice drilling operations.</p>

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Yasuhira Aoyagi ◽  
Haruo Kimura ◽  
Kazuo Mizoguchi

Abstract The earthquake rupture termination mechanism and size of the ruptured area are crucial parameters for earthquake magnitude estimations and seismic hazard assessments. The 2016 Mw 7.0 Kumamoto Earthquake, central Kyushu, Japan, ruptured a 34-km-long area along previously recognized active faults, eastern part of the Futagawa fault zone and northernmost part of the Hinagu fault zone. Many researchers have suggested that a magma chamber under Aso Volcano terminated the eastward rupture. However, the termination mechanism of the southward rupture has remained unclear. Here, we conduct a local seismic tomographic inversion using a dense temporary seismic network to detail the seismic velocity structure around the southern termination of the rupture. The compressional-wave velocity (Vp) results and compressional- to shear-wave velocity (Vp/Vs) structure indicate several E–W- and ENE–WSW-trending zonal anomalies in the upper to middle crust. These zonal anomalies may reflect regional geological structures that follow the same trends as the Oita–Kumamoto Tectonic Line and Usuki–Yatsushiro Tectonic Line. While the 2016 Kumamoto Earthquake rupture mainly propagated through a low-Vp/Vs area (1.62–1.74) along the Hinagu fault zone, the southern termination of the earthquake at the focal depth of the mainshock is adjacent to a 3-km-diameter high-Vp/Vs body. There is a rapid 5-km step in the depth of the seismogenic layer across the E–W-trending velocity boundary between the low- and high-Vp/Vs areas that corresponds well with the Rokkoku Tectonic Line; this geological boundary is the likely cause of the dislocation of the seismogenic layer because it is intruded by serpentinite veins. A possible factor in the southern rupture termination of the 2016 Kumamoto Earthquake is the existence of a high-Vp/Vs body in the direction of southern rupture propagation. The provided details of this inhomogeneous barrier, which are inferred from the seismic velocity structures, may improve future seismic hazard assessments for a complex fault system composed of multiple segments.


1987 ◽  
Vol 140 (1) ◽  
pp. 115-120
Author(s):  
Yoshibumi Tomoda ◽  
Hiromi Fujimoto

Author(s):  
Yoshiaki Hisada ◽  
Shinya Tanaka

ABSTRACT We present the theory of the fling step and a theoretical method for simulating accurately the near-fault strong motions, and apply it to reproduce various strong-motion records near surface faults. Theoretically, the fling step is the contribution of the static Green’s function in the representation theorem (Hisada and Bielak, 2003), and we show that this theory holds for any seismic velocity structure. We first demonstrate the validity of this theory using theoretical solutions of a circular fault model in a homogeneous full-space. Next, we apply the theory to layered half-spaces, present a theoretical method based on the wavenumber integration method, and introduce various techniques to simulate the near-fault ground motions including fling steps with high accuracy. Finally, we demonstrate the effectiveness of the method by reproducing various strong-motion records near surface fault ruptures and discuss the characteristics of near-fault strong motions including the fling step and the forward directivity pulse. We made all of the software and data used in this article available on the internet.


1994 ◽  
Vol 42 (4) ◽  
pp. 269-301 ◽  
Author(s):  
Hiroki Miyamachi ◽  
Minoru Kasahara ◽  
Sadaomi Suzuki ◽  
Kazuo Tanaka ◽  
Akira Hasegawa

Sign in / Sign up

Export Citation Format

Share Document