scholarly journals Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa

2018 ◽  
Vol 9 (4) ◽  
pp. 1261-1278 ◽  
Author(s):  
Brahima Koné ◽  
Arona Diedhiou ◽  
N'datchoh Evelyne Touré ◽  
Mouhamadou Bamba Sylla ◽  
Filippo Giorgi ◽  
...  

Abstract. The latest version of RegCM4 with CLM4.5 as a land surface scheme was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The sensitivity studies were performed over the West African domain from November 2002 to December 2004 at a spatial resolution of 50 km × 50 km and involved five convective schemes: (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All simulations were forced with ERA-Interim data. Validation of surface temperature at 2 m and precipitation were conducted using data from the Climate Research Unit (CRU), Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measurement Mission (TRMM) during June to September (rainy season), while the simulated atmospheric dynamic was compared to ERA-Interim data. It is worth noting that the few previous similar sensitivity studies conducted in the region were performed using BATS as a land surface scheme and involved less convective schemes. Compared with the previous version of RegCM, RegCM4-CLM also shows a general cold bias over West Africa whatever the convective scheme used. This cold bias is more reduced when using the Emanuel convective scheme. In terms of precipitation, the dominant feature in model simulations is a dry bias that is better reduced when using the Emanuel convective scheme. Considering the good performance with respect to a quantitative evaluation of the temperature and precipitation simulations over the entire West African domain and its subregions, the Emanuel convective scheme is recommended for the study of the West African climate system.

2018 ◽  
Author(s):  
Brahima Koné ◽  
Arona Diedhiou ◽  
N'datchoh Evelyne Touré ◽  
Mouhamadou Bamba Sylla ◽  
Filippo Giorgi ◽  
...  

Abstract. The latest version of RegCM4 with CLM4.5 as land surface scheme was used to assess the performance and the sensitivity of the simulated West African climate system to different convection schemes. The sensitivity studies were performed over the West Africa domain from November 2002 to December 2004, at spatial resolution of 50 km × 50 km and involved five (5) convective schemes: (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All simulations were forced with ERA-Interim data. Validation of surface temperature at 2 m and precipitation were conducted using respectively data from the Climate Research Unit (CRU) and Global Precipitation Climatology Project (GPCP) during June to September (rainy season). Quantitative assessment of the sensitivity tests were carried out using the mean bias, the pattern correlation coefficient, the root mean square difference, the probability density function of the temperature bias and the Taylor diagram. Results revealed a better performance of the configuration with Emanuel convection scheme to simulate the spatial and temporal variability of the temperature and the precipitation. Therefore, the configuration of RegCM4 with CLM4.5 as land surface model and implementing Emanuel convective scheme is recommended for the study of the West African climate system.


2021 ◽  
Author(s):  
Joshua Talib ◽  
Christopher Taylor ◽  
Cornelia Klein ◽  
Bethan L. Harris ◽  
Seonaid R. Anderson ◽  
...  

<p>Across West Africa rain-fed agriculture fulfils approximately 80% of the food needs of the population and employs 60% of the workforce. It is therefore critical to understand the effects of intraseasonal rainfall variability across West Africa. Previous work has shown that land-atmosphere interactions across West Africa can influence daily variability in deep convection characteristics and the impact of 10-25 day precipitation variability. Using earth observations and reanalyses, this study investigates the land surface response to 20-200 day precipitation variability and its impact on land-atmosphere interactions and the West African monsoon.</p><p>                Surprisingly, even though the sensitivity of the land surface across the Sahel to strong convection is short-lived (days) and daily precipitation patterns are strongly heterogeneous, a coherent regional-scale land surface response to 20-200 day precipitation variability is observed. This sensitivity of the land surface affects land-atmosphere interactions on a regional scale and perturbs the West African monsoon circulation. For example, during sub-seasonal periods of low rainfall, soil moisture significantly decreases across the Sahel and land surface temperatures increase by up to 2°C. Surface drying and warming across the Sahel is associated with an intensified heat low and a northward shift of low-level monsoon westerlies. During periods of high rainfall, the surface moistens and cools, which is associated with a high pressure tendency across the Sahel. This high pressure tendency dampens the heat low circulation across West Africa and reduces regional moisture fluxes. We show that the land surface response to 20-200 day rainfall variability across West Africa can have a significant impact on the monsoon circulation. This suggests that improving the representation of land-surface processes across West Africa has the potential to improve sub-seasonal forecast predictability and enhance early warning systems.</p>


1998 ◽  
Vol 11 (8) ◽  
pp. 2078-2096 ◽  
Author(s):  
Xinyu Zheng ◽  
Elfatih A. B. Eltahir

Abstract The focus of this paper is the role of meridional distribution of vegetation in the dynamics of monsoons and rainfall over West Africa. A moist zonally symmetric atmospheric model coupled with a simple land surface scheme is developed to investigate these processes. Four primary experiments have been carried out to examine the sensitivity of West African monsoons to perturbations in the meridional distribution of vegetation. In the control experiment, the authors assume a distribution of vegetation that resembles the natural vegetation cover in West Africa. Each perturbation experiment is identical to the control experiment except that a change in vegetation cover is imposed for a latitudinal belt that is 10° in width. The results of the numerical experiments demonstrate that West African monsoons and therefore rainfall distribution depend critically on the location of the vegetation perturbations. Changes in vegetation cover along the border between the Sahara desert and West Africa (desertification) may have a minor impact on the simulated monsoon circulation. However, coastal deforestation may cause the collapse of the monsoon circulation and have a dramatic impact on the regional rainfall. The observed deforestation in West Africa is then likely to be a significant contributor to the observed drought.


2012 ◽  
Vol 2012 ◽  
pp. 1-3
Author(s):  
Gregory S. Jenkins ◽  
Alessandra Giannini ◽  
Amadou Gaye ◽  
Andrea Sealy

2017 ◽  
Vol 15 (S1) ◽  
Author(s):  
Issiaka Sombie ◽  
Aissa Bouwayé ◽  
Yves Mongbo ◽  
Namoudou Keita ◽  
Virgil Lokossou ◽  
...  

1945 ◽  
Vol 21 (2-3) ◽  
pp. 99-103 ◽  
Author(s):  
Phyllis A. Clapham

In the following article is described an interesting parasitic condition which is difficult to interpret. The small intestine of an Hadada, Geronticus hagedash, was brought back from the West Coast of Africa by Major T. A. Cockburn, M.D., R.A.M.C, who kindly passed it to me for further examination. The bird is a member of the family Plataleidae, living in wooded districts in West Africa in the neighbourhood of water and feeding on invertebrates, mainly annelids and small crustaceans which it finds at the bottom of ponds and streams in the mud.


2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


Sign in / Sign up

Export Citation Format

Share Document