scholarly journals A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators

2021 ◽  
Vol 13 (7) ◽  
pp. 3467-3490
Author(s):  
Schmitty B. Thompson ◽  
Jessica R. Creveling

Abstract. In this review we compile and document the elevation, indicative meaning, and chronology of marine isotope substage 5a and 5c sea level indicators for 39 sites within three geographic regions: the North American Pacific coast, the North American Atlantic coast and the Caribbean, and the remaining globe. These relative sea level indicators, comprised of geomorphic indicators such as marine and coral reef terraces, eolianites, and sedimentary marine- and terrestrial-limiting facies, facilitate future investigation into marine isotope substage 5a and 5c interstadial paleo-sea level reconstruction, glacial isostatic adjustment, and Quaternary tectonic deformation. The open-access database, presented in the format of the World Atlas of Last Interglacial Shorelines (WALIS) database, can be found at https://doi.org/10.5281/zenodo.5021306 (Thompson and Creveling, 2021).

2021 ◽  
Author(s):  
Schmitty B. Thompson ◽  
Jessica R. Creveling

Abstract. In this review we compile and detail the elevation, indicative meaning, and chronology of Marine Isotope Stage 5a and 5c sea level indicators for 39 sites within three geographic regions: the Pacific coast of North America, the Atlantic coast of North America and the Caribbean, and the remaining globe. These relative sea level indicators, comprised of geomorphic indicators such as marine and coral reef terraces, eolianites, and sedimentary marine and terrestrial limiting facies, facilitate future investigation into Marine Isotope Stage 5a and 5c interstadial paleo-sea level reconstruction, glacial isostatic adjustment, and Quaternary tectonic deformation. The open access database, presented in the format of the World Atlas of Last Interglacial Shorelines (WALIS) database, can be found at https://doi.org/10.5281/zenodo.4426206 (Thompson and Creveling, 2021).


2021 ◽  
Vol 13 (4) ◽  
pp. 1633-1651
Author(s):  
Patrick Boyden ◽  
Jennifer Weil-Accardo ◽  
Pierre Deschamps ◽  
Davide Oppo ◽  
Alessio Rovere

Abstract. In this paper, we describe a sea-level database compiled using published last interglacial, Marine Isotopic Stage 5 (MIS 5), geological sea-level proxies within East Africa and the Western Indian Ocean (EAWIO). Encompassing vast tropical coastlines and coralline islands, this region has many occurrences of well-preserved last interglacial stratigraphies. Most notably, islands almost entirely composed of Pleistocene reefs (such as Aldabra, the Seychelles) have provided reliable paleo relative sea-level indicators and well-preserved samples for U-series chronology. Other sea-level proxies include uplifted marine terraces in the north of Somalia and Pleistocene eolian deposits notched by the MIS 5 sea level in Mozambique to tidal notches in luminescence-limited eolian deposits in Mozambique. Our database has been compiled using the World Atlas of Last Interglacial Shorelines (WALIS) interface and contains 58 sea-level indicators and 2 terrestrial-limiting data points. The open-access database is available at https://doi.org/10.5281/zenodo.4302244 (Version 1.03; Boyden et al., 2020).


2020 ◽  
Author(s):  
Deirdre D. Ryan ◽  
Alastair J. H. Clement ◽  
Nathan R. Jankowski ◽  
Paolo Stocchi

Abstract. This paper presents the current state-of-knowledge of the New Zealand (Aotearoa) last interglacial (MIS 5 sensu lato) sea-level record compiled within the framework of the World Atlas of Last Interglacial Shorelines (WALIS) database. Seventy-seven total relative sea-level (RSL) indicators (direct, marine-, and terrestrial-limiting points), commonly in association with marine terraces, were identified from over 120 studies reviewed. Extensive coastal deformation around New Zealand has resulted in a significant range of elevation measurements on both the North Island (276.8 to −94.2 msl) and South Island (173.1 to −70.0 msl) and prompted the use of RSL indicators to estimate rates of vertical land movement; however, indicators lack adequate description and age constraint. Identified RSL indicators are correlated with MIS 5, MIS 5e, MIS 5c, and MIS 5a and indicate the potential for the New Zealand sea-level record to inform sea-level fluctuation and climatic change within MIS 5 (sensu lato). The Northland (North Island) and Otago (South Island) regions, historically considered stable, have the potential to provide a regional sea-level curve in a remote location of the South Pacific across broad degrees of latitude. Future work requires modern analogue information, heights above a defined sea-level datum, better stratigraphic descriptions, and use of improved geochronological methods. The database presented in this study is available open-access at this link: http://doi.org/10.5281/zenodo.4056376 (Ryan et al., 2020a).


Geomorphology ◽  
2021 ◽  
pp. 107826
Author(s):  
Daniel R. Muhs ◽  
R. Randall Schumann ◽  
Lindsey T. Groves ◽  
Kathleen R. Simmons ◽  
Christopher R. Florian

2021 ◽  
Vol 13 (7) ◽  
pp. 3399-3437
Author(s):  
Deirdre D. Ryan ◽  
Alastair J. H. Clement ◽  
Nathan R. Jankowski ◽  
Paolo Stocchi

Abstract. This paper presents the current state of knowledge of the Aotearoa New Zealand last interglacial (marine isotope stage 5, MIS 5, sensu lato) sea-level record compiled within the framework of the World Atlas of Last Interglacial Shorelines (WALIS) database. A total of 77 relative sea-level (RSL) indicators (direct, marine-limiting, and terrestrial-limiting points), commonly in association with marine terraces, were identified from over 120 studies reviewed. Extensive coastal deformation around New Zealand has prompted research focused on active tectonics, the scale of which overprints the sea-level record in most regions. The ranges of last interglacial palaeo-shoreline elevations are significant on both the North Island (276.8 ± 10.0 to −94.2 ± 10.6 ma.m.s.l., above mean sea level) and South Island (165.8 ± 2.0 to −70.0 ± 10.3 ma.m.s.l.) and have been used to estimate rates of vertical land movement; however, in many instances there is a lack of adequate description and age constraint for high-quality RSL indicators. Identified RSL indicators are correlated with MIS 5, MIS 5e, MIS 5c, and MIS 5a and indicate the potential for the New Zealand sea-level record to inform sea-level fluctuation and climatic change within MIS 5. The Northland Region of the North Island and southeastern South Island, historically considered stable, have the potential to provide a regional sea-level curve, minimally impacted by glacio- and hydro-isostatic adjustment (GIA) and reflecting near-eustatic fluctuations in a remote location of the South Pacific, across broad degrees of latitude; however, additional records from these regions are needed. Future work requires modern analogue information, heights above a defined sea-level datum, better stratigraphic descriptions, and use of improved geochronological methods. The database presented in this study is available open access at this link: https://doi.org/10.5281/zenodo.4590188 (Ryan et al., 2020a).


2021 ◽  
Author(s):  
Schmitty B. Thompson ◽  
Jessica R. Creveling

<p>Reconstructions of global mean sea level (GMSL) through interstadials such as Marine Isotope Stages (MIS) 5a and 5c provide important constraints on the rates of growth and collapse of major ice sheets during warm periods analogous to future climate projections. These reconstructions rely upon precisely dated geomorphic and sedimentological indicators for past sea level whose present elevations are complicated by tectonics and glacial isostatic adjustment (GIA). Compilations of MIS 5a and 5c paleo-sea level indicators that covering a wide geographic range can be used to minimize misfit with glacial isostatic adjustment models and thereby quantify and refine the convolved contribution of GMSL to the present elevation of paleo-shoreline indicators. Here we present a global compilation of previously published Marine Isotope Stages 5a and 5c local sea level indicators from 39 sites covering three main regions: the Pacific coast of North America, the Atlantic coast of North America and the Caribbean, and far field. We describe the standardized entry of these data into the World Atlas of Last Interglacial Shorelines (WALIS) database. Each entry within the MIS 5a and 5c WALIS database reproduces from the primary literature the indicator elevation, indicative meaning, and geochronology, along with a comprehensive overview of the literature for each site. While MIS 5a and 5c indicators sites are geographically widespread, these data are also patchy and preferentially represent the North American continent and the Caribbean and, hence, regions intermediate and far afield of the contemporaneous ice sheets. While this dataset will support future refinements to MIS 5a and 5c GMSL reconstructions arising from GIA modeling, it also motivates further data collection.</p>


2021 ◽  
Author(s):  
Oliver Pollard ◽  
Natasha Barlow ◽  
Lauren Gregoire ◽  
Natalya Gomez ◽  
Víctor Cartelle

<p>The Last Interglacial (LIG) period (130 - 115 ka) was the last time in Earth’s history that the Greenland and Antarctic ice sheets were smaller than those of today due, in part, to polar temperatures reaching 3 - 5 °C above pre-industrial values. Similar polar temperature increases are predicted in the coming decades and the LIG period could therefore help to shed light on ice sheet and sea level mechanisms in a warming world.</p><p>The North Sea region is a promising study site for the reconstruction of both the magnitude and rate of LIG sea-level change as well as the identification of relative, individual ice sheet contributions to sea level. The impact of glacial isostatic adjustment (GIA) is particularly significant for the North Sea region due to its proximity to the former Eurasian ice sheet, which deglaciated during the penultimate deglaciation leading into the LIG. The evolution of the local Eurasian and global ice sheets during the penultimate glacial cycle has left a complex spatio-temporal pattern of GIA during the LIG, both regionally and globally. In addition, interpretation of the LIG record is further complicated by uncertainties in ongoing earth deformation and sea level evolution since the LIG. However, there are large uncertainties in the geometry and evolution of global ice sheets before the Last Glacial Maximum and, in particular, a major source of uncertainty for North Sea LIG records is the geometry and evolution of the Eurasian ice sheet during the Penultimate Glacial Maximum (PGM).</p><p>We produce a range of plausible global ice sheet histories spanning the last 400 thousand years that vary in penultimate deglaciation characteristics including glacial maximum ice sheet volume, deglaciation timing, and the ice volume distribution of the Eurasian ice sheet. This novel PGM Eurasian component is constructed with the use of a simple ice sheet model (Gowan et al. 2016) enabling systematic variation in the thickness of each ice sheet region within known uncertainty ranges. We then employ a gravitationally consistent sea level model (Kendall et al. 2005) with a range of viscoelastic Earth structure models to calculate the global GIA response to each ice history and to infer which input parameters the North Sea LIG signal is most sensitive to. This work will improve our understanding of the GIA effects on near field relative sea level during previous interglacials and will enable a systematic quantification of uncertainties in LIG sea level in the North Sea.</p>


2021 ◽  
Author(s):  
Ciro Cerrone ◽  
Matteo Vacchi ◽  
Alessandro Fontana ◽  
Alessio Rovere

<p>An open access database containing raw data of Last Interglacial sea-level proxies for the Western Mediterranean has been compiled by reviewing hundreds of original published papers in accordance with the WALIS template (https://warmcoasts.eu/world-atlas.html). WALIS allows collecting both the relative sea-level (RSL) indicators and ages data in a standardized format. Ca. 360 sea-level index points for the coasts of Spain, France, Italy, Albania, Algeria and Morocco have been included in the database. The sea-level index points of the database are related to ca. 350 samples dated by a wide range of dating techniques, e.g., U-series, Amino Acid Racemization, Luminescence (Tl/OSL) and Electron Spin Resonance methods or chronostratigraphically correlated to marine deposits bearing P. latus and “Senegalese fauna”. In fact, for some areas of the Mediterranean Sea, the “Senegalese fauna” is indicative of the MIS 5e.</p><p>Among the eleven types of sea-level indicators of our database, the majority of them are represented by marine terraces, beach deposits (or beachrocks), and tidal notches. Whenever the relationship between the RSL indicators and the former sea-level could not be quantified, such indicators have been considered as marine or terrestrial limiting points. An indirect age of the tidal notches has been provided by correlation with the nearby dated deposit. In the case no precise elevation information has been reported by the Authors, the elevation error of RSL datapoints has been reassessed in the 20 % of the elevation value, more a 5% if the sea-level datum was lacking in the scientific papers we have reviewed.  Overall, the quality of each RSL datapoints and the associated age have been ranked in a 0 to 5 scale score according to Rovere et al., (2020).</p><p> </p><p><strong>References</strong></p><p>Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A., Gowan, E., 2020. Descriptions of database fields for the World Atlas of Last Interglacial Shorelines (WALIS) (Version 1,0). Zenodo. https://doi.org/http://doi.org/10.5281/zenodo.3961544</p>


2020 ◽  
Author(s):  
Patrick Boyden ◽  
Jennifer Weil-Accardo ◽  
Pierre Deschamps ◽  
Davide Oppo ◽  
Alessio Rovere

Abstract. In this paper, we describe a sea-level database compiled using published Last Interglacial, Marine Isotopic Stage 5 (MIS 5), geological sea-level proxies within Eastern Africa and the Western Indian Ocean (EAWIO). Encompassing vast tropical coastlines and coralline islands, this region has many occurrences of well preserved last interglacial stratigraphies. Most notably, islands almost entirely composed by Pleistocene reefs (such as Aldabra, the Seychelles) have provided reliable paleo relative sea-level indicators and well-preserved samples for U-series chronology. Other sea-level proxies include uplifted marine terraces in the north of Somalia and tidal notches in luminescence limited aeolian deposits in Mozambique. Our database has been compiled using the World Atlas of Last Interglacial Shorelines (WALIS) interface and contains 57 sea-level indicators and 2 terrestrial limiting data points. The database is available open access at https://doi.org/10.5281/zenodo.4043366 (Version 1.02) (Boyden et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document