scholarly journals Dielectric database of organic Arctic soils (DDOAS)

2020 ◽  
Author(s):  
Igor Savin ◽  
Valery Mironov ◽  
Konstantin Muzalevskiy ◽  
Sergey Fomin ◽  
Andrey Karavayskiy ◽  
...  

Abstract. This article presents a Dielectric database of organic Arctic soils (DDOAS). The DDOAS was created based on dielectric measurements of seven samples of organic-rich soils collected in various parts of the Arctic tundra: Yamal and Taimyr Peninsula, Samoilovsky Island (the Russian Federation), and Northern Slope of Alaska (U.S.). The organic matter content (by weight) of the soil samples presented varied from 35 % to 90 %. The refractive index (RI) and normalized attenuation coefficient (NAC) were measured under laboratory conditions by the coaxial waveguide method in the frequency range from ~ 10 MHz to ~ 16 GHz, while the moisture content changed from air-dry to field capacity and the temperature from −40 °C to +25 °C. The total number of measured values of the RI and NAC contained in the database is more than 1.5 million values. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks. DDOAS is presented as Excel files. The files of DDOAS are available on http://doi.org/10.5281/zenodo.3819912.

2020 ◽  
Vol 12 (4) ◽  
pp. 3481-3487
Author(s):  
Igor Savin ◽  
Valery Mironov ◽  
Konstantin Muzalevskiy ◽  
Sergey Fomin ◽  
Andrey Karavayskiy ◽  
...  

Abstract. This article presents a dielectric database of organic Arctic soils (DDOAS). The DDOAS was created based on the dielectric measurements of seven samples of organic-rich soils collected in various parts of the Arctic tundra: Yamal Peninsula, Taimyr Peninsula, Samoylov Island (all in the Russian Federation) and the northern slope of Alaska (US). The organic matter content (by weight) of the presented soil samples varied from 35 % to 90 %. The refractive index (RI) and normalised attenuation coefficient (NAC) were measured under laboratory conditions by the coaxial-waveguide method in the frequency range from ∼ 10 MHz to ∼ 16 GHz, while the moisture content changed from air-dry to field capacity, and the temperature changed from −40 to +25 ∘C. The total number of measured values of the RI and NAC contained in the database is more than 1.5 million. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks. The DDOAS is presented as Excel files. The files of the DDOAS are available on https://doi.org/10.5281/zenodo.3819912 (Savin and Mironov, 2020).


Author(s):  
V. L. Mironov ◽  
I. V. Savin

The article presents the temperature spectroscopic dielectric model of moist soils, developed on the basis of measurements of six thawed and frozen Arctic soils with different contents of organic matter, from 30 to 90%. This model allows predicting the complex permittivity values of moist soil, which are in good agreement with the data of dielectric measurements. The model is applicable in the frequency range from 0.05 to 15 GHz, the temperature range from –30° to +25 °C, the humidity range from 0.009 to 1.001 g/g. The model for use in remote sensing algorithms of humidity and soil temperature using space radiometric and radar sensing data can be recommended.


2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


2019 ◽  
Vol 18 (1) ◽  
pp. 107-125
Author(s):  
P. C. OGUIKE ◽  
U. E. UTIN

The study of soils derived from different parent materials is useful in formulating appropriate management schemes for soil health and agricultural production. A comparative assessment of some physical properties and organic matter content of soils formed from coastal plain sands (CPS), sandstone (SST) and river alluvium (ALV) was conducted in Akwa Ibom State, Nigeria. Topsoil samples (0 – 30 cm) were collected from ten points in soils of each of the three parent materials for laboratory analyses. The soil samples were analyzed for texture, macro and micro aggregate stability indices, soil water characteristics, bulk density and organic matter. Data generated were subjected to Analysis of Variance to compare properties of soils of the different parent materials. Significantly different means were separated using the Least Significant Difference at 5% probability level. Results showed that soils of SST and CPS parent materials both had loamy sand texture while that of ALV soil was clay. Bulk density of ALV soil (1.20 Mg m-3) was significantly lower (p≤0.05) than those of CPS (1.55 Mg m-3) and SST (1.39 Mg m-3).  Significantly higher (p≤0.05) mean weight diameter (MWD) (2.01 mm), aggregated silt+clay (51.96%) and clay flocculation index (89.00%) were observed in ALV soils than in CPS and SST soils while the dispersion ratio and clay dispersion index were significantly higher (p≤0.05) in CPS and SST soils than in the ALV soil. Alluvial soil had significantly higher (p≤0.05) saturation water content (SWC), field capacity (FC), permanent wilting point (PWP) and available water content (AWC) of 0.61, 0.45, 0.25 and 0.20 m3 m-3, respectively, than those of CPS and SST. Alluvial soil also had the lowest cumulative infiltration (3.05 cm) and saturated hydraulic conductivity (0.40 cm hr-1) relative to those of CPS and SST. The CPS soil had significantly lower (p≤0.05) organic matter content (2.07%) than SST (3.06%) and ALV (3.34%) soils. Cumulative infiltration (I) significantly and positively correlated with total sand (TS) (r = 0.710*) in the CPS soil, and Ksat (r = 0.681*), MWD (r = 0.829**) and CFI (r = 0.655*) in the SST soil. In the ALV soil, cumulative infiltration positively correlated with total porosity (r = 0.770**) and negatively with bulk density (r = - 0.770**). Saturated hydraulic conductivity (Ksat) had a positive correlation with SWC (r = 0.745*) and TP (r = 0.833**), but a significant and negative correlation with BD (r = - 0.833**) in SST soil. Field capacity (FC) positively and significantly correlated with TP (r = 0.638*) in CPS soil, and with MWD (r = 0.713*), CFI (r = 0.647*) and OM (r = 0.651*) in SST soil and with TP (r = 0.790**) and OM (r = 0.672*) in ALV soil. The correlations of FC with BD (r = - 0.638*) in CPS soil, with CDI (r = -0.647*) in SST soil and with BD (r = -0.790**) in ALV soil were significant and negative. MWD positively and significantly correlated with organic matter (r = 0.699*).  The clayey ALV soil will be suitable for paddy rice production and dry season crops due to its higher water retention capacity than the CPS and SST soils which will be better utilized for vegetable crop production under irrigation. The CPS and SST soils can also be applied to intensive crop production under rain fed condition and supplemented with irrigation.  


2020 ◽  
Vol 4 (2) ◽  
pp. 695-698
Author(s):  
Akinrinshola Dare ◽  
Samson O. Okechalu ◽  
Bako Amos ◽  
Thompson Oluwole Ademola ◽  
G. Lapkat Luka

This paper shows the spatial variability of soil properties and factors that contribute to the pattern of variability in Federal College of Forestry Mechanization Research farm.   Nine (9) Soil samples were obtained from various points on the farm using random sampling procedure and these samples were subjected to further for laboratory analysis to determine the particle size fraction, soil pH, organic matter content, and from the data obtained was used to determine the Wilting Point (WP), Saturation Capacity (SC), Field Capacity (FC), Available Water Content (AW), Soil Hydraulic Conductivity (SHC), and Bulk density (BD) using SOILWAT software.  Descriptive statistics and factor analysis techniques was used to analyze the data obtained, the coefficient of variation ranged from 3.045 to 61.825% and factor analysis showed that the variability of the soil properties is as a result of the textural characteristics, and organic matter.


1966 ◽  
Vol 6 (23) ◽  
pp. 402 ◽  
Author(s):  
WM McArthur ◽  
JL Wheeler ◽  
DW Goodall

In two field experiments at Armidale, in the northern tablelands of New South Wales, on a range of grey-brown and yellow podzolic soils, it was shown that production of forage oats was largely independent of soil morphological properties. The properties recorded were colour and thickness of horizons, proportion of ferruginous inclusions, bulk density of A horizons, and several properties associated with organic matter content. In the first experiment, under fertilized conditions, yield was related to moisture supply, and in the second, without added fertilizer, yield was related to per cent moisture content at field capacity, exchangeable calcium, and darkness (Munsell value) of the surface soil. Interrelationships between soil properties were mainly as a result of organic matter content. These findings have implications in soil surveys for land use, sampling procedures, and field experimentation.


Weed Science ◽  
1975 ◽  
Vol 23 (5) ◽  
pp. 344-348 ◽  
Author(s):  
M. L. Ketchersid ◽  
M. G. Merkle

Perfluidone (1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl]-methanesulfonamide) was chemically stable for 2 to 3 weeks on the surface of three Texas soils either air dry or at field capacity and at temperatures of 22 and 46 C. Perfluidone was susceptible to photodecomposition when applied to glass petri dishes and exposed to ultraviolet irradiation. Perfluidone was readily leached through neutral or slightly alkaline soils, with a tendency toward greater downward movement in soils having low clay and organic matter content. However, leaching was less in an acid loamy sand than in either neutral loamy sand or clay soils.


1998 ◽  
Vol 46 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Pua Kutiel

This study aims at describing and characterizing the annual vegetation of the northern Sharon sand dunes and its relationship with organic matter content, texture, and field capacity of the upper soil layer (0–30 cm). Eleven annual plant units were determined. These units differ in plant composition, plant density, total biomass, species richness, and species diversity in correspondence with the upper soil layer properties. The plant biomass and the species richness increased with the increase of organic matter content and field capacity. However, species diversity and the average number of species per sampling square increased from shifting to semi- stabilized sand dunes, and then decreased at the stabilized dunes where the organic matter and field capacity were high. Changes in the annual vegetation gradient, together with that of the soil properties, provided a detailed description of the succession scenario on the sand dunes of this area.


Ecosystems ◽  
2021 ◽  
Author(s):  
Jakub Buda ◽  
Ewa A. Poniecka ◽  
Piotr Rozwalak ◽  
Roberto Ambrosini ◽  
Elizabeth A. Bagshaw ◽  
...  

AbstractCryoconite is a sediment occurring on glacier surfaces worldwide which reduces ice albedo and concentrates glacier surface meltwater into small reservoirs called cryoconite holes. It consists of mineral and biogenic matter, including active microorganisms. This study presents an experimental insight into the influence of sediment oxygenation on the cryoconite ability to produce and decomposition of organic matter. Samples were collected from five glaciers in the Arctic and the European mainland. Cryoconite from three glaciers was incubated in stagnant and mechanically mixed conditions to imitate inter-hole water–sediment mixing by meltwater occurring on glaciers in Northern Hemisphere, and its effect on oxygen profiles and organic matter content. Moreover, we investigated short-term changes of oxygen conditions in cryoconite from four glaciers in illuminated and dark conditions. An anaerobic zone was present or approaching zero oxygen in all illuminated cryoconite samples, varying in depth depending on the origin of cryoconite: from 1500 µm from Steindalsbreen (Scandinavian Peninsula) and Forni Glacier (The Alps) to 3100 µm from Russell Glacier and Longyearbreen (Arctic) after incubation. Organic matter content varied between glaciers from 6.11% on Longyearbreen to 16.36% on Russell Glacier. The mixed sediment from the Forni Glacier had less organic matter than stagnant, the sediment from Longyearbreen followed this trend, but the difference was not statistically significant, while the sediment from Ebenferner did not differ between groups. Our results have implications for the understanding of biogeochemical processes on glacier surfaces, the adaptation of organisms to changing physical conditions due to abrupt sediment mixing, but also on the estimation of productivity of supraglacial systems.


Sign in / Sign up

Export Citation Format

Share Document