scholarly journals Estimating Sand Bedload in Rivers by Tracking Dunes: a comparison of methods based on bed elevation time-series

2019 ◽  
Author(s):  
Kate C. P. Leary ◽  
Daniel Buscombe

Abstract. Quantifying bedload transport is paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles acquired using echosounders. Various echosounder sampling methodologies of how to extract bed elevations profiles exist. Using two sets of repeat multibeam sonar surveys with large spatio-temporal resolution and coverage, we compute bedload using three field techniques (one actual and two simulated) for acquiring bed elevation profiles: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.

2020 ◽  
Vol 8 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Kate C. P. Leary ◽  
Daniel Buscombe

Abstract. Quantifying bed-load transport is paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bed load remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time series of bed elevation profiles (BEPs) acquired using echo sounders. There are various echo sounder sampling methodologies to extract bed elevation profiles. Using two sets of repeat multibeam sonar surveys with high spatiotemporal resolution and coverage, we compute bed load using three field techniques (one actual and two simulated) for acquiring BEPs: repeat multibeam, single-beam, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single-beam sonar. Multibeam and multiple single-beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve as a guide for design of optimal sampling and for comparing transport estimates from different sonar configurations.


Author(s):  
Carlos A. Severiano ◽  
Petrônio de Cândido de Lima e Silva ◽  
Miri Weiss Cohen ◽  
Frederico Gadelha Guimarães

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2021 ◽  
Vol 259 ◽  
pp. 112394
Author(s):  
Huijin Yang ◽  
Bin Pan ◽  
Ning Li ◽  
Wei Wang ◽  
Jian Zhang ◽  
...  

1989 ◽  
Vol 26 (7) ◽  
pp. 1440-1452 ◽  
Author(s):  
R. A. Kostaschuk ◽  
M. A. Church ◽  
J. L. Luternauer

The lower main channel of the Fraser River, British Columbia, is a sand-bed, salt-wedge estuary in which variations in velocity, discharge, and bedform characteristics are contolled by river discharge and the tides. Bed-material composition remains consistent over the discharge season and in the long term. Changes in bedform height and length follow but lag behind seasonal fluctuations in river discharge. Migration rates of bedforms respond more directly to river discharge and tidal fall than do height and length. Bedform characteristics were utilized to estimate bedload transport in the estuary, and a strong, direct, but very sensitive relationship was found between bed load and river discharge. Annual bedload transport in the estuary is estimated to be of the order of 0.35 Mt in 1986. Bedload transport in the estuary appears to be higher than in reaches upstream, possibly because of an increase in sediment movement along the bed to compensate for a reduction in suspended bed-material load produced by tidal slack water and the salt wedge.


2017 ◽  
Vol 195 ◽  
pp. 118-129 ◽  
Author(s):  
Anne Schneibel ◽  
Marion Stellmes ◽  
Achim Röder ◽  
David Frantz ◽  
Benjamin Kowalski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document