material load
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260790
Author(s):  
Yang Shu ◽  
Jinqi Zhang ◽  
Wei Li ◽  
Pengwu Zhao ◽  
Qiyue Zhang ◽  
...  

In boreal regions, the frequency of forest fires is increasing. In this study, thermogravimetric analysis was used to analyze the pyrolysis kinetics of dead surface combustibles in different forest types within the Daxing’an Mountains, China. The results show that the combustible material load of forest types, the Larix forest (LG) is relatively high. Base on the E of kinetic parameters, the LG, and Quercus forest (QM) forest types had relatively high combustibility values and comprehensive combustibility values for 1-, 10-, and 100-h time lags. According to the obtained P values, the pyrolysis of dead surface fuels with 1-, 10-, and 100-h time lags is relatively difficult in the Larix / Betula mixed forest (L-B) and QM forest types. Therefore, mixed forests of the LG, L-B, and QM tree species can be established as fire-resistant forests to establish a fire barrier, reduce the combustibility of forest stands, and reduce the possibility of forest fires.


Geomorphology ◽  
2021 ◽  
pp. 107801
Author(s):  
Carles Ferrer-Boix ◽  
Júlia Boix Oliva ◽  
Juan P. Martín-Vide ◽  
Alfredo Ollero

2021 ◽  
Author(s):  
Laxman Rathod ◽  
Bandita Barman ◽  
Bimlesh Kumar

<p>Estimation of sediment transport has significant implementation on water resources and hydraulic engineering. Transport of sediment is affected by flow and sediment properties and also climatic variation of the region. To examine the behaviour of sediment transport, wide range of experiments have been performed in laboratories. Most of the developed sediment transport formulations are empirical or semi empirical in nature. These days, the development of computer-aided programs such as MATLAB has opened the way for researchers to quickly study the generation mechanism. The “Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)” can be used widely for developing sediment model. In this research, Feed Forward Back Propagation (FFBP) sort of ANN and Hybrid type based on the Sugeno approach of ANFIS is used to develop a model for bed material load transport using parameters like “channel discharge, width of the channel, flow depth,  friction/energy slope, mean size of sediment, bed shear stress, critical shear stress, gradation coefficient of the sediment particles, specific gravity, and viscosity”. Subsequently, the relationship between the expected and observed values is presented. The proposed approach showed superior results based on various statistical parameters, like the coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe coefficient (NSE), Root mean square error (RMSE) and Mean absolute error (MAE). Correlation (R<sup>2</sup>), higher than (~0.90) indicates that ANN and ANFIS are compatible and capable of measuring the total bed material load.</p><p><strong>Keywords:</strong> Sediment transport, Bed material Load, ANFIS, ANN, FFBP</p>


2021 ◽  
Vol 303 ◽  
pp. 01027
Author(s):  
Vadim Yurchenko ◽  
Valeriy Nesterov

The planned increase in the mine output from 6.5 to 13.6 million tons per year has set the task of reconstructing a conveyor transport in the eastern inclined shaft of the Raspadskaya mine. The roadway length is 4100 m; the reduced inclination angle is +7°40´. An attempt was made to combine all the positive global practices in one project: the distribution of drive power along the length of a conveyor belt, minimizing the capital cost of implementation. Within the framework of this article, an approach to choosing the speed of a con-veyor belt is discussed, a comparative analysis of the two most com-mon types of intermediate “tripper-type” and “belt-to-belt” drives is given; calculation of a belt conveyor with intermediate “belt-to-belt” drives providing non-reloading conveying in the eastern inclined shaft. Pull force calculations showed that a conveyor belt with four interme-diate “belt-to-belt” drives can be implemented as follows: belt width – 1400 mm, belt speed – 4.0 m/s, mono-material load-carrying belt – PVG-4000, mono-material drive belt – PVG-1400, 2-pulley drive units when mounted on one side: head drive power – 2×1000 = 2000 kW, intermediate drive power – 2×1600 = 3200 kW. Thus, the use of a conveyor belt with four intermediate “belt-to-belt” drives in the in-clined shaft will give the following results: non-reloading transporta-tion over the entire length of the shaft, reducing the additional degra-dation of transported coal due to the exclusion of reloading points, minimizing costs through the use of less durable belts, minimizing costs of sinking an inclined shaft of a smaller cross-section.


2020 ◽  
Vol 13 (1) ◽  
pp. 156
Author(s):  
Marek Johanides ◽  
Lenka Kubíncová ◽  
David Mikolášek ◽  
Antonín Lokaj ◽  
Oldřich Sucharda ◽  
...  

Initially, timber was considered only as an easily accessible and processable material in nature; however, its excellent properties have since become better understood. During the discovery of new building materials and thanks to new technological development processes, industrial processing technologies and gradually drastically decreasing forest areas, wood has become an increasingly neglected material. Load-bearing structures are made mostly of reinforced concrete or steel elements. However, ecological changes, the obvious problems associated with environmental pollution and climate change, are drawing increasing attention to the importance of environmental awareness. These factors are attracting increased attention to wood as a building material. The increased demand for timber as a building material offers the possibility of improving its mechanical and physical properties, and so new wood-based composite materials or new joints of timber structures are being developed to ensure a better load capacity and stiffness of the structure. Therefore, this article deals with the improvement of the frame connection of the timber frame column and a diaphragm beam using mechanical fasteners. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The subject of the research and its motivation was to replace these commonly used fasteners with more modern ones to shorten and simplify the assembly time and to improve the load capacity and rigidity of this type of frame connection.


2020 ◽  
Vol 11 (1) ◽  
pp. 130-141
Author(s):  
E. Bombasaro ◽  
R. Oddera

AbstractAn intensive field measurement was carried out to assess the force acting on the rollers for a large diameter pipe conveyor. A special idler enclosing two dynamometers was designed and installed in the various roller positions. The forces on the rollers were metered while the conveyor was running with and without conveying material. The position of the two dynamometers was such allowing to derive the theoretical contact point of the belt onto the roller. The measurements were carried out in a straight section of the pipe conveyor and in the centre part of a horizontal curve. Obtained data are presented, analysed, and compared with the values from a six-point stiffness testing device. Further, the participation factor of the material load on the roller forces for a single roller is derived. The study concludes with a critical review of the findings comparing them with results presented in the literature.


2020 ◽  
Author(s):  
Elizabeth Dingle ◽  
Hugh Sinclair ◽  
Jeremy Venditti ◽  
Mikael Attal ◽  
Tim Kinnaird ◽  
...  

<p>The gravel-sand transition is observed along most rivers. It is characterized by an abrupt reduction in median bed grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load-dominated to suspended bed material load. We document changes in channel stability, suspended sediment concentrations, flux and grain size across the gravel-sand transition of the Karnali River, Nepal. Upstream of the gravel-sand transition, gravel-bed channels are stable over hundred to thousand-year timescales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size and flux reveal counterintuitive increases downstream of the gravel-sand transition. The results demonstrate a dramatic change in channel dynamics across the transition, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower gradient, relatively mobile sand-bed channels. The increase in sediment concentrations and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank materials.   These results bring new constraints on channel stability at mountain fronts, and indicate that temporally and spatially limited sediment flux measurements downstream of gravel-sand transitions are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.</p>


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 468-472 ◽  
Author(s):  
Elizabeth H. Dingle ◽  
Hugh D. Sinclair ◽  
Jeremy G. Venditti ◽  
Mikaël Attal ◽  
Tim C. Kinnaird ◽  
...  

Abstract The gravel-sand transition (GST) is commonly observed along rivers. It is characterized by an abrupt reduction in median grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load–dominated to suspended bed material load. We documented changes in channel stability, suspended sediment concentration, flux, and grain size across the GST of the Karnali River, Nepal. Upstream of the GST, gravel-bed channels are stable over hundred- to thousand-year time scales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size, and flux reveal counterintuitive increases downstream of the GST. The results demonstrate a dramatic change in channel dynamics across the GST, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower-gradient, relatively mobile sand-bed channels. The increase in sediment concentration and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank material. These results bring new constraints on channel stability at mountain fronts and indicate that temporally and spatially limited sediment flux measurements downstream of GSTs are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.


2020 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Heiner Meyer ◽  
Jérémy Epp

Mechanical loading scenarios, comparable to a deep rolling process, were reproduced in static indentation experiments on AISI 4140H steel samples with a cylindrical deep rolling tool and investigated in situ with synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) on beamline ID11. Through the use of spatially resolved diffraction data, two-dimensional (2D) equivalent von Mises stress maps were recorded during loading and after unloading. The material modifications were analyzed in the material below the contact zone for different loading conditions. It was demonstrated that the characteristics of internal material load and residual stress distributions can be evaluated through data fitting and the effect of the applied force could be linked to the stress fields by an empirical model. The experimental values were then compared to a contact mechanics approach in order to analyze the correlation between the theoretical maximum loading stresses and the stored elastic residual stresses remaining by considering the dissipation of a certain amount of energy through plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document