scholarly journals Estimating sand bed load in rivers by tracking dunes: a comparison of methods based on bed elevation time series

2020 ◽  
Vol 8 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Kate C. P. Leary ◽  
Daniel Buscombe

Abstract. Quantifying bed-load transport is paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bed load remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time series of bed elevation profiles (BEPs) acquired using echo sounders. There are various echo sounder sampling methodologies to extract bed elevation profiles. Using two sets of repeat multibeam sonar surveys with high spatiotemporal resolution and coverage, we compute bed load using three field techniques (one actual and two simulated) for acquiring BEPs: repeat multibeam, single-beam, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single-beam sonar. Multibeam and multiple single-beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve as a guide for design of optimal sampling and for comparing transport estimates from different sonar configurations.

2019 ◽  
Author(s):  
Kate C. P. Leary ◽  
Daniel Buscombe

Abstract. Quantifying bedload transport is paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles acquired using echosounders. Various echosounder sampling methodologies of how to extract bed elevations profiles exist. Using two sets of repeat multibeam sonar surveys with large spatio-temporal resolution and coverage, we compute bedload using three field techniques (one actual and two simulated) for acquiring bed elevation profiles: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

2016 ◽  
Vol 142 (5) ◽  
pp. 04016003 ◽  
Author(s):  
Carlos R. Wyss ◽  
Dieter Rickenmann ◽  
Bruno Fritschi ◽  
Jens M. Turowski ◽  
Volker Weitbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document