scholarly journals A versatile, linear complexity algorithm for flow routing in topographies with depressions

2019 ◽  
Vol 7 (2) ◽  
pp. 549-562 ◽  
Author(s):  
Guillaume Cordonnier ◽  
Benoît Bovy ◽  
Jean Braun

Abstract. We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the Priority-Flood depression filling algorithm), this solution is based on the explicit computation of the flow paths both within and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although this represents many operations, a linear time complexity can be reached for the whole computation, making it very efficient. Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the best performance when used in landscape evolution models. In addition to its efficiency, our proposed method also has the advantage of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving). Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems as well, such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g., process digital elevation models of moderate size on single computers or run batches of simulations as part of an inference study.

2018 ◽  
Author(s):  
Guillaume Cordonnier ◽  
Benoît Bovy ◽  
Jean Braun

Abstract. We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the so-called Priority-Flood depression filling algorithm), this solution is based on the explicit computation of the flow paths both within and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although this represents many operations, a linear time-complexity can be reached for the whole computation, making it very efficient. Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the best performance when used in landscape evolution models. Besides its efficiency, our proposed method has also the advantage of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving). Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems as well. This sequential algorithm may be helpful for those who need to, e.g., process digital elevation models of moderate size on single computers or run batches of simulations as part of an inference study.


2012 ◽  
Vol 15 (2) ◽  
pp. 568-579
Author(s):  
J. P. Leitão ◽  
D. Prodanović ◽  
S. Boonya-aroonnet ◽  
Č. Maksimović

In order to simulate surface runoff and flooding, one-dimensional (1D) overland flow networks can be automatically delineated using digital elevation models (DEM). The resulting network comprises flow paths and terrain depressions/ponds and is essential to reliably model pluvial (surface) flooding events in urban areas by so-called 1D/1D models. Conventional automatic DEM-based flow path delineation methods have problems in producing realistic overland flow paths when detailed high-resolution DEMs of urban areas are used. The aim of this paper is to present the results of research and development of three enhanced DEM-based overland flow path delineation methods; these methods are triggered when the conventional flow path delineation process stops due to a flow obstacle. Two of the methods, the ‘bouncing ball and buildings’ and ‘bouncing ball and A*’ methods, are based on the conventional ‘bouncing ball’ concept; the third proposed method, the ‘sliding ball’ method, is based on the physical water accumulation concept. These enhanced methods were tested and their results were compared with results obtained using two conventional flow path delineation methods using a semi-synthetic test DEM. The results showed significant improvements in terms of the reliability of the delineated overland flow paths when using these enhanced methods.


2013 ◽  
Vol 28 (4) ◽  
pp. 1756-1766 ◽  
Author(s):  
Liyang Xiong ◽  
Guoan Tang ◽  
Shijiang Yan ◽  
Shijie Zhu ◽  
Yiying Sun

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255496
Author(s):  
Ross Ensley ◽  
Richard D. Hansen ◽  
Carlos Morales-Aguilar ◽  
Josie Thompson

This paper classifies the karst landscapes of the Petén Plateau and defines the Mirador-Calakmul Karst Basin by illustrating the distribution of its karst hydrologic features. Archaeological and spatial research of the Mirador-Calakmul area of Guatemala and Mexico has shown it to be a karst basin with geopolitical implications. Current research characterizes the karst landscapes of the Petén Plateau, maps the distribution of karst hydrologic features, and delineates the basin in geomorphological terms. To further this aim, multiple forms of remote sensing data including orthophotographs, a satellite Digital Elevation Model, satellite multispectral images, and Light Detection and Ranging (LiDAR) data have been integrated to interpret the karst features in the study area. Outcrop study and thin section analysis of the upper Buena Vista Formation document that the dominant lithologies are a shallow water algal boundstone interbedded with terrestrial caliche. Karst landforms have been mapped over the Petén Plateau and we identify five karst landscapes, the largest of which is a fluviokarst landscape dominated by karst valleys. We further map karst hydrologic features including seasonal swamps, dolines, intermittent lakes, intermittent streams, solution-enhanced fractures, and springs all of which are characteristic of drainage basins. Boundaries of the karst basin are mapped from multiple lines of evidence including distribution of the karst valleys, a line of springs along the western boundary of the fluviokarst landscape, and a surface drainage analysis. We capture and classify hydrologic data points and develop a regional groundwater map that indicates subsurface flow from east to west within the basin. A drainage map illustrates the extensive system of karst valleys, boundaries, and inferred groundwater flow paths of the Mirador-Calakmul Karst Basin. It was within this geomorphological setting that the ancient Maya developed an extensive civilization during the Middle and Late Preclassic periods (1000 BCE-150 CE).


Sign in / Sign up

Export Citation Format

Share Document