scholarly journals The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

2017 ◽  
Vol 10 (11) ◽  
pp. 4285-4305 ◽  
Author(s):  
Yoko Tsushima ◽  
Florent Brient ◽  
Stephen A. Klein ◽  
Dimitra Konsta ◽  
Christine C. Nam ◽  
...  

Abstract. The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. This paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments will also be facilitated by the sharing of diagnostic codes via this catalogue.Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.

2017 ◽  
Author(s):  
Yoko Tsushima ◽  
Florent Brient ◽  
Stephen A. Klein ◽  
Dimitra Konsta ◽  
Christine Nam ◽  
...  

Abstract. The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from General Circulation Model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. This paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided on the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments will also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud-circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.


2011 ◽  
Vol 4 (4) ◽  
pp. 3047-3065
Author(s):  
R. S. Smith

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).


2011 ◽  
Vol 4 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
W.-L. Chan ◽  
A. Abe-Ouchi ◽  
R. Ohgaito

Abstract. Recently, PlioMIP (Pliocene Model Intercomparison Project) was established to assess the ability of various climate models to simulate the mid-Pliocene warm period (mPWP), 3.3–3.0 million years ago. We use MIROC4m, a fully coupled atmosphere-ocean general circulation model (AOGCM), and its atmospheric component alone to simulate the mPWP, utilizing up-to-date data sets designated in PlioMIP as boundary conditions and adhering to the protocols outlined. In this paper, a brief description of the model is given, followed by an explanation of the experimental design and implementation of the boundary conditions, such as topography and sea surface temperature. Initial results show increases of approximately 10°C in the zonal mean surface air temperature at high latitudes accompanied by a decrease in the equator-to-pole temperature gradient. Temperatures in the tropical regions increase more in the AOGCM. However, warming of the AOGCM sea surface in parts of the northern North Atlantic Ocean and Nordic Seas is less than that suggested by proxy data. An investigation of the model-data discrepancies and further model intercomparison studies can lead to a better understanding of the mid-Pliocene climate and of its role in assessing future climate change.


2017 ◽  
Author(s):  
Allison A. Wing ◽  
Kevin A. Reed ◽  
Masaki Satoh ◽  
Bjorn Stevens ◽  
Sandrine Bony ◽  
...  

Abstract. RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state, cloud feedbacks, and convective aggregation across the spectrum of models to be assessed. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, and single column models.


2016 ◽  
Vol 9 (11) ◽  
pp. 4019-4028 ◽  
Author(s):  
Peter Good ◽  
Timothy Andrews ◽  
Robin Chadwick ◽  
Jean-Louis Dufresne ◽  
Jonathan M. Gregory ◽  
...  

Abstract. nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change – i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1). nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio – while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up–ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding gained will help interpret the spread in policy-relevant scenario projections. Here we outline the basic physical principles behind nonlinMIP, and the method of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the experimental design, and finally some analysis principles. The test of traceability from abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 and CMIP6 DECK protocols.


2011 ◽  
Vol 4 (3) ◽  
pp. 2011-2046 ◽  
Author(s):  
W.-L. Chan ◽  
A. Abe-Ouchi ◽  
R. Ohgaito

Abstract. Recently, PlioMIP (Pliocene Model Intercomparison Project) was established to assess the ability of various climate models to simulate the mid-Pliocene warm period (MPWP), 3.29–2.97 million years ago. We use MIROC4m, a fully coupled atmosphere-ocean general circulation model (AOGCM), and its atmospheric component alone to simulate the MPWP, utilizing up-to-date data sets designated in PlioMIP as boundary conditions and adhering to the protocols outlined. In this paper, a brief description of the model is given, followed by an explanation of the experimental design and implementation of the boundary conditions, such as topography and sea surface temperature. Initial results show increases of approximately 10 °C in the zonal mean surface air temperature at high latitudes accompanied by a decrease in the equator-to-pole temperature gradient. Temperature in the tropical regions increase more in the AOGCM. However, warming of the AOGCM sea surface in parts of the northern North Atlantic Ocean and Nordic Seas is less than that suggested by proxy data. An investigation of the model-data discrepancies and further model intercomparison studies can lead to a better understanding of the mid-Pliocene climate and of its role in assessing future climate change.


2020 ◽  
Vol 37 (10) ◽  
pp. 1093-1101
Author(s):  
Yaqi Wang ◽  
Zipeng Yu ◽  
Pengfei Lin ◽  
Hailong Liu ◽  
Jiangbo Jin ◽  
...  

Abstract The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere-ocean general circulation model projections of ocean climate change forced by increased CO2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes. The FAFMIP experiments have already been conducted with the Flexible Global Ocean-Atmosphere-Land System Model, gridpoint version 3.0 (FGOALS-g3). The model datasets have been submitted to the Earth System Grid Federation (ESGF) node. Here, the details of the experiments, the output variables and some baseline results are presented. Compared with the preliminary results of other models, the evolutions of global mean variables can be reproduced well by FGOALS-g3. The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean, indicating large uncertainties in the regional sea level projections of these two regions.


Sign in / Sign up

Export Citation Format

Share Document