scholarly journals A Radiative Transfer Module for Calculating Photolysis Rates and Solar Heating in Climate Models: Solar-J 7.5

2017 ◽  
Author(s):  
Juno Hsu ◽  
Michael Prather ◽  
Philip Cameron-Smith ◽  
Alex Veidenbaum ◽  
Alex Nicolau

Abstract. Solar-J is a comprehensive model for radiative transfer over the solar spectrum that addresses the needs of both photochemistry and solar heating in Earth system models. Solar-J includes an 8-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. It uses the scattering phase function of aerosols and clouds expanded to 8th order and thus makes no isotropic-equivalent approximations that are prevalent in most solar heating codes. It calculates both chemical photolysis rates and the absorption of sunlight and thus the heating rates throughout the Earth's atmosphere. Solar-J is a spectral extension of Fast-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.85 μm region. For solar heating, Solar-J extends its calculation out to 12 μm using correlated-k gas absorption bins in the infrared from the shortwave Rapid Radiative Transfer Model for GCM applications (RRTMG-SW). Solar-J successfully matches RRTMG's atmospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud both models use the same physical properties, and we find a systematic low bias in the RRTMG-SW of about 3 % in planetary albedo across all solar zenith angles, caused by RRTMG-SW's 2-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG's three different parameterizations are larger, less systematic, and occur throughout the atmosphere. Effectively, Solar-J has combined the best components of RRTMG and Fast-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength integration, scattering, and averaging over cloud fields all have comparably small errors. More accurate solutions come with increased computational costs, about 5x that of RRTMG, but there are options for reduced costs or computational acceleration that would bring costs down while maintaining balanced errors across components and improved fidelity.

2017 ◽  
Vol 10 (7) ◽  
pp. 2525-2545 ◽  
Author(s):  
Juno Hsu ◽  
Michael J. Prather ◽  
Philip Cameron-Smith ◽  
Alex Veidenbaum ◽  
Alex Nicolau

Abstract. Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength integration, scattering, and averaging over cloud fields – all have comparably small errors. More accurate solutions with Solar-J come with increased computational costs, about 5 times that of RRTMG-SW for a single atmosphere. There are options for reduced costs or computational acceleration that would bring costs down while maintaining improved fidelity and balanced errors.


2020 ◽  
Vol 635 ◽  
pp. A156
Author(s):  
K. G. Strassmeier ◽  
I. Ilyin ◽  
E. Keles ◽  
M. Mallonn ◽  
A. Järvinen ◽  
...  

Context. Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in front of the Sun. Aims. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Methods. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope in its polarimetric mode in Stokes IQUV at a spectral resolution of 130 000 (0.06 Å). In particular, the spectra cover the red parts of the optical spectrum between 7419–9067 Å. The spectrograph’s exposure meter was used to obtain a light curve of the lunar eclipse. Results. The brightness of the Moon dimmed by 10.m75 during umbral eclipse. We found both branches of the O2 A-band almost completely saturated as well as a strong increase of H2O absorption during totality. A pseudo O2 emission feature remained at a wavelength of 7618 Å, but it is actually only a residual from different P-branch and R-branch absorptions. It nevertheless traces the eclipse. The deep penumbral spectra show significant excess absorption from the Na I 5890-Å doublet, the Ca II infrared triplet around 8600 Å, and the K I line at 7699 Å in addition to several hyper-fine-structure lines of Mn I and even from Ba II. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earth’s atmosphere. The absorption in Ca II and K I remained visible throughout umbral eclipse. Our radial velocities trace a wavelength dependent Rossiter-McLaughlin effect of the Earth eclipsing the Sun as seen from the Tycho crater and thereby confirm earlier observations. A small continuum polarization of the O2 A-band of 0.12% during umbral eclipse was detected at 6.3σ. No line polarization of the O2 A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of ≈0.2% on the degree of line polarization during transmission through Earth’s atmosphere and magnetosphere.


1845 ◽  
Vol 1 ◽  
pp. 21-24
Author(s):  
David Brewster

The author was led, in prosecution of his researches on the absorptive action of transparent media of light, which have been partly communicated in previous papers to the Society, to examine the influence of coloured gaseous bodies. Iodine vapour was one of these, and its action was found of a similar character to that of fluids having a similar tint. Nitrous acid gas presented a far more extraordinary phenomenon.


1960 ◽  
Vol 9 (3) ◽  
pp. 445-454 ◽  
Author(s):  
R. M. Goody

An approximate solution is presented to the problem of the propagation of a temperature wave through a stratified medium which both diffuses and radiates heat. The solution is a combination of two waves whose relative amplitudes vary with the distance from the lower boundary. Apparent diffusivities computed from phase lag and attenuation coefficients can differ greatly from each other and can vary with height even if the actual diffusivity does not.An example, using parameters simulating the earth's atmosphere, suggests that analysis of the propagation of the diurnal wave upward from the earth's surface is likely to be inadequate if radiative effects are not considered.


2005 ◽  
Vol 5 (7) ◽  
pp. 1855-1877 ◽  
Author(s):  
B. Mayer ◽  
A. Kylling

Abstract. The libRadtran software package is a suite of tools for radiative transfer calculations in the Earth's atmosphere. Its main tool is the uvspec program. It may be used to compute radiances, irradiances and actinic fluxes in the solar and terrestrial part of the spectrum. The design of uvspec allows simple problems to be easily solved using defaults and included data, hence making it suitable for educational purposes. At the same time the flexibility in how and what input may be specified makes it a powerful and versatile tool for research tasks. The uvspec tool and additional tools included with libRadtran are described and realistic examples of their use are given. The libRadtran software package is available from http://www.libradtran.org.


2015 ◽  
Vol 15 (13) ◽  
pp. 7449-7456 ◽  
Author(s):  
W. Wandji Nyamsi ◽  
A. Arola ◽  
P. Blanc ◽  
A. V. Lindfors ◽  
V. Cesnulyte ◽  
...  

Abstract. The k-distribution method and the correlated-k approximation of Kato et al. (1999) is a computationally efficient approach originally designed for calculations of the broadband solar radiation at ground level by dividing the solar spectrum in 32 specific spectral bands from 240 to 4606 nm. Compared to a spectrally resolved computation, its performance in the UV band appears to be inaccurate, especially in the spectral intervals #3 [283, 307] nm and #4 [307, 328] nm because of inaccuracy in modeling the transmissivity due to ozone absorption. Numerical simulations presented in this paper indicate that a single effective ozone cross section is insufficient to accurately represent the transmissivity over each spectral interval. A novel parameterization of the transmissivity using more quadrature points yields maximum errors of respectively 0.0006 and 0.0143 for intervals #3 and #4. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran (library for radiative transfer). The new parameterization considerably improves the accuracy of the retrieval of irradiances in UV bands.


Sign in / Sign up

Export Citation Format

Share Document