photolysis rates
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 29)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 15 (1) ◽  
pp. 219-249
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada's online chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved to make use of the online size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Submodel System) photolysis module, through the use of the online aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea salt, dust and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for 2 months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and reanalysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD 1-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites, specifically, showed better correlation coefficients for urban AERONET sites and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications – version 2), with an overall underprediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impacts of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


2021 ◽  
Author(s):  
Simon Weber ◽  
Roland Ruhnke ◽  
Christian Scharun ◽  
Axel Seifert ◽  
Peter Braesicke

<p class="Default">Ozon (O<sub>3</sub>) in der Stratosphäre absorbiert die biologisch schädliche ultraviolette Strahlung der Sonne (den größten Teil der UV-B-Strahlung) und verhindert, dass sie die Erdoberfläche erreicht. Die energiereiche UV-Strahlung kann das genetische Material in den Zellen von Pflanzen und Tieren, sowie von Menschen zerstören. Ohne die stratosphärische Ozonschicht wäre das Leben auf der Erde, wie wir es kennen, nicht möglich.</p> <p class="Default">Der Deutsche Wetterdienst (DWD) stellt UV-Indexkarten zur Verfügung, um die Bevölkerung bezgl. hoher UV-Belastungen zu informieren und zu warnen [1]. Dazu werden Daten aus dem golobalen Vorhersagemodell ICON (ICOsahedral Non-hydrostatic model) [2], externe Ozondaten und ein eigenes UV-Modell verwendet, um eine Vorhersage des UV-Index zu erstellen, der z.B. auf der DWD-Webseite als Vorhersage visualisiert wird.</p> <p class="Default">In diesem Projekt wird in Zusammenarbeit mit dem DWD ein selbstkonsistentes System entwickelt, um UV-Indexkarten vollständig mittels ICON zu generieren. Zu diesem Zweck wird ein linearisiertes Ozonschema (LINOZ) [3] für tägliche Ozonvorhersagen optimiert. Dies geschieht als Erweiterung der ICON-ART Struktur [4] [5] (ART: Aerosols and Reactive Trace gases). Für die Berechnung von UV-Strahlungsflüssen und -indizes wurde ein Strahlungstransportmodell für Sonnenstrahlung (Cloud-J) [6] implementiert und angepasst. Da das gesamte System als effiziente Lösung für UV-Indexvorhersagen dem DWD zur Verfügung gestellt werden soll, wird besonders Wert auf eine umfassende Funktionalität bei sehr geringem Rechenaufwand gelegt. Ein wichtiger Teil der Arbeit ist daher auch die Validierung und Optimierung der Verfahren und Abläufe, um zuverlässige und qualitativ hochwertige Vorhersagen zu erstellen.</p> <p class="Default">Wir präsentieren erste Ergebnisse des von ICON-ART modellierten UV-Strahlungsflusses durch die Atmosphäre auf globaler Skala und über ausgewählten Gebieten, dessen tageszeitliche Variation, sowie den Einfluss von Wolken auf die UV-Intensität.</p> <p><strong>Anmerkung:</strong></p> <p>Dieses Projekt wird durch den Deutschen Wetterdienst im Rahmen der Extramuralen Forschung mit folgender Nummer gefördert: 4819EMF03.</p> <p><strong>Referenzen:</strong></p> <p>[1]  https://kunden.dwd.de/uvi/index.jsp</p> <p>[2]   Zängl, G., et al., The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc., 141(687), 563-579 (2014)</p> <p>[3]   McLinden, C. A., et al., Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux, Journal of Geophysical Research: Atmospheres, 105(D11), 14653-14665 (2000)</p> <p>[4]  Rieger, D., et al., ICON-ART - A new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8(6), 1659-1676 (2015)</p> <p>[5]  Schröter, et al., ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations. Geosci. Model Dev., 11(10), 4043-4068 (2018)</p> <p>[6]  Prather, M.J., Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c. Geosci. Model Dev., 8(8), 2587-2595 (2015)</p>


2021 ◽  
Vol 21 (23) ◽  
pp. 17373-17388
Author(s):  
Dirk Dienhart ◽  
John N. Crowley ◽  
Efstratios Bourtsoukidis ◽  
Achim Edtbauer ◽  
Philipp G. Eger ◽  
...  

Abstract. Formaldehyde (HCHO) is the most abundant aldehyde in the troposphere. While its background mixing ratio is mostly determined by the oxidation of methane, in many environments, especially in the boundary layer, HCHO can have a large variety of precursors, in particular biogenic and anthropogenic volatile organic compounds (VOCs) and their oxidation products. Here we present shipborne observations of HCHO, hydroxyl radical (OH) and OH reactivity (R(OH)), which were obtained during the Air Quality and Climate Change in the Arabian Basin (AQABA) campaign in summer 2017. The loss rate of HCHO was inferred from its reaction with OH, measured photolysis rates and dry deposition. In photochemical steady state, the HCHO loss is balanced by production via OH-initiated degradation of VOCs, photolysis of oxygenated VOCs (OVOCs) and the ozonolysis of alkenes. The slope αeff from a scatter plot of the HCHO production rate versus the product of OH and R(OH)eff (excluding inorganic contribution) yields the fraction of OH reactivity that contributes to HCHO production. Values of αeff varied between less than 2 % in relatively clean air over the Arabian Sea and the southern Red Sea and up to 32 % over the polluted Arabian Gulf (also known as Persian Gulf), signifying that polluted areas harbor a larger variety of HCHO precursors. The separation of R(OH)eff into individual compound classes revealed that elevated values of αeff coincided with increased contribution of alkanes and OVOCs, with the highest reactivity of all VOCs over the Arabian Gulf.


2021 ◽  
Author(s):  
Jinhui Gao ◽  
Ying LI ◽  
Zhouqing Xie ◽  
Lili Wang ◽  
Bo Hu ◽  
...  

2021 ◽  
Vol 21 (17) ◽  
pp. 13609-13630
Author(s):  
Beth S. Nelson ◽  
Gareth J. Stewart ◽  
Will S. Drysdale ◽  
Mike J. Newland ◽  
Adam R. Vaughan ◽  
...  

Abstract. The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground-level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage and agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbon volatile organic compounds (C2–C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed; thus, VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 %, and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the Emissions Database for Global Atmospheric Research (EDGAR) v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to increase P(O3), even when the source was removed in its entirety. Effective reduction in P(O3) was achieved by reducing road transport along with emissions from combustion for manufacturing and process emissions. Modelled P(O3) reduced by ∼ 20 ppb h−1 when these combined sources were halved. This study highlights the importance of reducing VOCs in parallel with NOx and PM in future pollution abatement strategies in Delhi.


2021 ◽  
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada’s on-line chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved, to make use of the on-line size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Sub-Model System) photolysis module, through the use of the on-line aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea-salt, dust, and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for two months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and re-analysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module, and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD one-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites specifically, showed better correlation coefficients for urban AERONET sites, and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 re-analysis (Modern-Era Retrospective analysis for Research and Applications – Version 2), with an overall under-prediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impact of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes, are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


2021 ◽  
Author(s):  
Beth S. Nelson ◽  
Gareth J. Stewart ◽  
Will S. Drysdale ◽  
Mike J. Newland ◽  
Adam R. Vaughan ◽  
...  

Abstract. The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage, agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbons volatile organic compounds (C2 – C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed, thus VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 % and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the EDGAR v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to increase P(O3), even when the source was removed in its entirety. Effective reduction in P(O3) was achieved by reducing road transport along with emissions from combustion for manufacturing and process emissions. Modelled P(O3) reduced by ~20 ppb h−1 when these combined sources were halved. This study highlights the importance of reducing VOCs in parallel with NOx and PM in future pollution abatement strategies in Delhi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chien-Hung Chen ◽  
Tu-Fu Chen ◽  
Shang-Ping Huang ◽  
Ken-Hui Chang

AbstractSince the photolysis rate plays an important role in any photoreaction leading to compound sink and radical formation/destruction and eventually O3 formation, its impact on the simulated O3 concentration was evaluated in the present study. Both RADM2 and RACM were adopted with and without updated photolysis rate constants. The newly developed photolysis rates were determined based on two major absorption cross-section and quantum yield data sources. CMAQ in conjunction with meteorological MM5 and emission data retrieved from Taiwan and East Asia were employed to provide spatial and temporal O3 predictions over a one-week period in a three-level nested domain [from 81 km × 81 km in Domain 1 (East Asia) to 9 km × 9 km in Domain 3 (Taiwan)]. Four cases were analyzed, namely, RADM2, with the original photolysis rates applied in Case 1 as a reference case, RADM2, with the updated photolysis rates applied in Case 2, and RACM, with and without the updated photolysis rates applied in Cases 3 and 4, respectively. A comparison of the simulation and observed results indicates that both the application of updated photolysis rate constants and RACM instead of RADM2 enhanced all three error analysis indicators (unpaired peak prediction accuracy, mean normalized bias error and mean absolute normalized gross error). Specifically, RADM2 with the updated photolysis rates resulted in an increase of 12 ppb (10%) in the daily maximum O3 concentration in southwestern Taiwan, while RACM without the updated photolysis rates resulted in an increase of 20 ppb (17%) in the daily maximum O3 concentration in the same area. When RACM with the updated photolysis rate constants was applied in the air quality model, the difference in the daily maximum O3 concentration reached up to 30 ppb (25%). The implication of Case 4 (RACM with the updated photolysis rates) for the formation and degradation of α-pinene and d-limonene was examined.


2021 ◽  
Author(s):  
Hao Yang ◽  
Lei Chen ◽  
Hong Liao ◽  
Jia Zhu ◽  
Wenjie Wang ◽  
...  

Abstract. We examined the impacts of aerosol-radiation interactions, including the effects of aerosol-photolysis interaction (API) and aerosol-radiation feedback (ARF), on surface-layer ozone (O3) concentrations during one multi-pollutant air pollution episode characterized by high O3 and PM2.5 levels from 28 July to 3 August 2014 in North China, by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model embedded with an integrated process analysis scheme. Our results show that aerosol-radiation interactions decrease the daytime downward shortwave radiation at surface, 2 m temperature, 10 m wind speed, planetary boundary layer height, photolysis rates J[NO2] and J[O1D] by 115.8 W m−2, 0.56 °C, 0.12 m s−1, 129 m, 1.8 × 10−3 s−1 and 6.1 × 10−6 s−1, and increase relative humidity at 2 m and downward shortwave radiation in the atmosphere by 2.4 % and 72.8 W m−2. The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 11.4 ppb (13.5 %), with API and ARF contributing 74.6 % and 25.4 % of the O3 decrease, respectively. The combined impacts of API and ARF on surface O3 are further quantitatively characterized by the ratio of changed O3 concentration to local PM2.5 level. The ratio is calculated to be −0.14 ppb (µg m−3)−1 averaged over the multi-pollutant air pollution area in North China. Process analysis indicates that the weakened O3 chemical production makes the greatest contribution to API effect while the reduced vertical mixing is the key process for ARF effect. This study implies that future PM2.5 reductions will lead to O3 increases due to weakened aerosol-radiation interactions. Therefore, tighter controls of O3 precursors are needed to offset O3 increases caused by weakened aerosol-radiation interactions in the future.


2021 ◽  
Author(s):  
Juan Alday ◽  
Alexander Trokhimovskiy ◽  
Patrick Irwin ◽  
Colin Wilson ◽  
Franck Montmessin ◽  
...  

Abstract The current Martian atmosphere is about five times more enriched in deuterium than Earth's, providing a direct testimony that Mars hosted several times more water in its early youth than nowadays. Estimates of the total amount of water lost to space from the current mean D/H value depend on a rigorous appraisal of the relative escape between deuterated and non-deuterated water. The transport of water to the upper atmosphere, from whence it may escape to space, has been assumed to be controlled by water condensation and photolysis, both of which affect the isotope composition of the escaping hydrogen. Their respective role in influencing the relative proportion of escaping D and H atom populations in the upper atmosphere has remained speculative. Here we report HDO and H<2sub>O profiles observed by the Atmospheric Chemistry Suite (ExoMars Trace Gas Orbiter) in orbit around Mars that, once combined with expected photolysis rates, reveal that the ultraviolet dissociation of water not only governs the production of atomic hydrogen, prevailing over the ion chemistry mechanism, but also dominates the production of H relative to D atoms, disrupting the old paradigm of atmospheric condensation being the main process differentiating D and H in the upper atmosphere.


Sign in / Sign up

Export Citation Format

Share Document