scholarly journals Bolchem: an On-Line Coupled Mesoscale Chemistry Model

2019 ◽  
Author(s):  
Rita Cesari ◽  
Alberto Maurizi ◽  
Massimo D'Isidoro ◽  
Tony Christian Landi ◽  
Mihaela Mircea ◽  
...  

Abstract. This work presents the on-line coupled meteorology-chemistry transport model BOLCHEM based on the hydrostatic meteorological BOLAM model, the gas chemistry module SAPRC90 and the aerosol dynamic module AERO3. It includes parameterizations to describe natural source emissions, dry and wet removal processes, as well as the transport and dispersion of air pollutants. The equations for different processes are solved on the same grid during the same integretation step, by means of operator splitting method. The paper describes the model and shows the model performances at continental scale for oneyear run (December 2009–November 2010). The results show that BOLCHEM reproduces both O3 and PM10 at surface. For O3, we found the best agreement in the summer, with a correlation coefficient R of 0.7 and mean bias of 4.0. On the contrary, PM10 is better reproduced in the winter, with a correlation coefficient R of 0.6 and the mean bias MB of 6.7.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Rita Cesari ◽  
Tony Christian Landi ◽  
Massimo D’Isidoro ◽  
Mihaela Mircea ◽  
Felicita Russo ◽  
...  

This work presents the on-line coupled meteorology–chemistry transport model BOLCHEM, based on the hydrostatic meteorological BOLAM model, the gas chemistry module SAPRC90, and the aerosol dynamic module AERO3. It includes parameterizations to describe natural source emissions, dry and wet removal processes, as well as the transport and dispersion of air pollutants. The equations for different processes are solved on the same grid during the same integration step, by means of a time-split scheme. This paper describes the model and its performance at horizontal resolution of 0.2∘× 0.2∘ over Europe and 0.1∘× 0.1∘ in a nested configuration over Italy, for one year run (December 2009–November 2010). The model has been evaluated against the AIRBASE data of the European Environmental Agency. The basic statistics for higher resolution simulations of O3, NO2 and particulate matter concentrations (PM2.5 and PM10) have been compared with those from Copernicus Atmosphere Monitoring Service (CAMS) ensemble median. In summer, for O3 we found a correlation coefficient R of 0.72 and mean bias of 2.15 over European domain and a correlation coefficient R of 0.67 and mean bias of 2.36 over Italian domain. PM10 and PM2.5 are better reproduced in the winter, the latter with a correlation coefficient R of 0.66 and the mean bias MB of 0.35 over Italian domain.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
C. F. Lo

We have presented a new unified approach to model the dynamics of both the sum and difference of two correlated lognormal stochastic variables. By the Lie-Trotter operator splitting method, both the sum and difference are shown to follow a shifted lognormal stochastic process, and approximate probability distributions are determined in closed form. Illustrative numerical examples are presented to demonstrate the validity and accuracy of these approximate distributions. In terms of the approximate probability distributions, we have also obtained an analytical series expansion of the exact solutions, which can allow us to improve the approximation in a systematic manner. Moreover, we believe that this new approach can be extended to study both (1) the algebraic sum ofNlognormals, and (2) the sum and difference of other correlated stochastic processes, for example, two correlated CEV processes, two correlated CIR processes, and two correlated lognormal processes with mean-reversion.


2021 ◽  
Vol 190 (3) ◽  
pp. 779-810
Author(s):  
Michael Garstka ◽  
Mark Cannon ◽  
Paul Goulart

AbstractThis paper describes the conic operator splitting method (COSMO) solver, an operator splitting algorithm and associated software package for convex optimisation problems with quadratic objective function and conic constraints. At each step, the algorithm alternates between solving a quasi-definite linear system with a constant coefficient matrix and a projection onto convex sets. The low per-iteration computational cost makes the method particularly efficient for large problems, e.g. semidefinite programs that arise in portfolio optimisation, graph theory, and robust control. Moreover, the solver uses chordal decomposition techniques and a new clique merging algorithm to effectively exploit sparsity in large, structured semidefinite programs. Numerical comparisons with other state-of-the-art solvers for a variety of benchmark problems show the effectiveness of our approach. Our Julia implementation is open source, designed to be extended and customised by the user, and is integrated into the Julia optimisation ecosystem.


Sign in / Sign up

Export Citation Format

Share Document