scholarly journals Review of "The effect of satellite derived leaf area index and roughness length information on modelled reactive nitrogen deposition in north-western Europe"

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Shelley C. van der Graaf ◽  
Richard Kranenburg ◽  
Arjo J. Segers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTM) are frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr flows. In these models, the parameterization of the atmosphere-biosphere exchange of Nr is largely based on few surface exchange measurement and is therefore known to be highly uncertain. In addition to this, the input parameters that are used here are often fixed values, only linked to specific land use classes. In an attempt to improve this, a combination of multiple satellite products is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. As LAI, we use the MODIS MCD15A2H product. The monthly z0 input maps presented in this paper are a function of satellite-derived NDVI values (MYD13A3 product) for short vegetation types (such as grass and arable land) and a combination of satellite-derived forest canopy height and LAI for forests. The use of these growth-dependent satellite products allows us to represent the growing season more realistically. For urban areas, the z0 values are updated, too, and linked to a population density map. The approach to derive these dynamic z0 estimates can be linked to any land use map and is as such transferable to other models. We evaluated the resulting changes in modelled deposition of Nr components using the LOTOS-EUROS CTM, focusing on Germany, the Netherlands and Belgium. The implementation of these updated LAI and z0 input maps led to local changes in the total Nr deposition of up to ~ 30 % and a general shift from wet to dry deposition. The most distinct changes are observed in land use specific deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated critical load exceedances for specific natural ecosystems.


2020 ◽  
Vol 13 (5) ◽  
pp. 2451-2474
Author(s):  
Shelley C. van der Graaf ◽  
Richard Kranenburg ◽  
Arjo J. Segers ◽  
Martijn Schaap ◽  
Jan Willem Erisman

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTMs) are frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr flows. In these models, the parameterization of the atmosphere–biosphere exchange of Nr is largely based on few surface exchange measurement and is therefore known to be highly uncertain. In addition to this, the input parameters that are used here are often fixed values, only linked to specific land use classes. In an attempt to improve this, a combination of multiple satellite products is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. As LAI, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD15A2H product. The monthly z0 input maps presented in this paper are a function of satellite-derived normalized difference vegetation index (NDVI) values (MYD13A3 product) for short vegetation types (such as grass and arable land) and a combination of satellite-derived forest canopy height and LAI for forests. The use of these growth-dependent satellite products allows us to represent the growing season more realistically. For urban areas, the z0 values are updated, too, and linked to a population density map. The approach to derive these dynamic z0 estimates can be linked to any land use map and is as such transferable to other models. We evaluated the sensitivity of the modelled Nr deposition fields in LOng Term Ozone Simulation – EURopean Operational Smog (LOTOS-EUROS) v2.0 to the abovementioned changes in LAI and z0 inputs, focusing on Germany, the Netherlands and Belgium. We computed z0 values from FLUXNET sites and compared these to the default and updated z0 values in LOTOS-EUROS. The root mean square difference (RMSD) for both short vegetation and forest sites improved. Comparing all sites, the RMSD decreased from 0.76 (default z0) to 0.60 (updated z0). The implementation of these updated LAI and z0 input maps led to local changes in the total Nr deposition of up to ∼30 % and a general shift from wet to dry deposition. The most distinct changes are observed in land-use-specific deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated critical load exceedances for specific natural ecosystems.


1984 ◽  
Vol 20 (2) ◽  
pp. 161-170
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


1984 ◽  
Vol 20 (2) ◽  
pp. 161-170 ◽  
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


2017 ◽  
Vol 44 (11) ◽  
pp. 5836-5843 ◽  
Author(s):  
P. K. Alekseychik ◽  
A. Korrensalo ◽  
I. Mammarella ◽  
T. Vesala ◽  
E.-S. Tuittila

2015 ◽  
Vol 12 (8) ◽  
pp. 2533-2548 ◽  
Author(s):  
K. D. Maurer ◽  
G. Bohrer ◽  
W. T. Kenny ◽  
V. Y. Ivanov

Abstract. Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.


Sign in / Sign up

Export Citation Format

Share Document