scholarly journals SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP

2021 ◽  
Author(s):  
Xia Lin ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle

Abstract. The Sea Ice Evaluation Tool (SITool) described in this paper is a performance metrics and diagnostics tool developed to evaluate the skill of bi-polar model reconstructions of sea ice concentration, extent, edge location, drift, thickness, and snow depth. It is a Python-based software and consists of well-documented functions used to derive various sea ice metrics and diagnostics. Here, the SITool version 1.0 (v1.0) is introduced and documented, and is then used to evaluate the performance of global sea ice reconstructions from nine models that provided sea ice output under the experimental protocols of the Coupled Model Intercomparison Project 6 (CMIP6) Ocean Model Intercomparison Project with two different atmospheric forcing datasets: the Coordinated Ocean-ice Reference Experiments version 2 (CORE-II) and the updated Japanese 55-year atmospheric reanalysis (JRA55-do). Two sets of observational references for sea ice concentration, thickness, snow depth, and ice drift are systematically used to reflect the impact of observational uncertainty on model performance. Based on available model outputs and observational references, the ice concentration, extent, and edge location during 1980–2007, as well as the ice thickness, snow depth, and ice drift during 2003–2007 are evaluated. It is found that (1) in general, model biases are larger than observational uncertainties and model performances are primarily consistent compared to different observational references, (2) By changing the atmospheric forcing from CORE-II to JRA55-do reanalysis data, the overall performance (mean state, interannual variability and trend) of the simulated sea ice areal properties in both hemispheres, as well as the mean ice thickness simulation in the Antarctic, the mean snow depth and ice drift simulations in both hemispheres are improved, (3) the simulated sea ice areal properties are also improved in the model with increased spatial resolution, (4) for the cross-metric analysis, there is no link between the performance in one variable and the performance in another. The SITool is an open-access version-controlled software that can run on a wide range of CMIP6 compliant sea ice outputs. The current version of SITool (v1.0) is primarily developed to evaluate atmosphere-forced simulations and it could be eventually extended to fully coupled models.

2021 ◽  
Vol 14 (10) ◽  
pp. 6331-6354
Author(s):  
Xia Lin ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle

Abstract. The Sea Ice Evaluation Tool (SITool) described in this paper is a performance metrics and diagnostics tool developed to evaluate the skill of Arctic and Antarctic model reconstructions of sea ice concentration, extent, edge location, drift, thickness, and snow depth. It is a Python-based software and consists of well-documented functions used to derive various sea ice metrics and diagnostics. Here, SITool version 1.0 (v1.0) is introduced and documented, and is then used to evaluate the performance of global sea ice reconstructions from nine models that provided sea ice output under the experimental protocols of the Coupled Model Intercomparison Project phase 6 (CMIP6) Ocean Model Intercomparison Project with two different atmospheric forcing datasets: the Coordinated Ocean-ice Reference Experiments version 2 (CORE-II) and the updated Japanese 55-year atmospheric reanalysis (JRA55-do). Two sets of observational references for the sea ice concentration, thickness, snow depth, and ice drift are systematically used to reflect the impact of observational uncertainty on model performance. Based on available model outputs and observational references, the ice concentration, extent, and edge location during 1980–2007, as well as the ice thickness, snow depth, and ice drift during 2003–2007 are evaluated. In general, model biases are larger than observational uncertainties, and model performance is primarily consistent compared to different observational references. By changing the atmospheric forcing from CORE-II to JRA55-do reanalysis data, the overall performance (mean state, interannual variability, and trend) of the simulated sea ice areal properties in both hemispheres, as well as the mean ice thickness simulation in the Antarctic, the mean snow depth, and ice drift simulations in both hemispheres are improved. The simulated sea ice areal properties are also improved in the model with higher spatial resolution. For the cross-metric analysis, there is no link between the performance in one variable and the performance in another. SITool is an open-access version-controlled software that can run on a wide range of CMIP6-compliant sea ice outputs. The current version of SITool (v1.0) is primarily developed to evaluate atmosphere-forced simulations and it could be eventually extended to fully coupled models.


2019 ◽  
Vol 13 (2) ◽  
pp. 491-509 ◽  
Author(s):  
Sindre Fritzner ◽  
Rune Graversen ◽  
Kai H. Christensen ◽  
Philip Rostosky ◽  
Keguang Wang

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for obtaining the best-possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, which include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present study, a coupled ocean–sea-ice model is used to assess the assimilation impact of sea-ice thickness and snow depth on the model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean and Sea Ice Satellite Application Facility, thin sea ice from the European Space Agency's (ESA) Soil Moisture and Ocean Salinity mission, thick sea ice from ESA's CryoSat-2 satellite, and a new snow-depth product derived from the National Space Agency's Advanced Microwave Scanning Radiometer (AMSR-E/AMSR-2) satellites. The model results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a smaller but still positive short-term effect on snow depth and sea-ice concentration. In our study, the seasonal forecast showed that assimilating snow depth led to a less accurate long-term estimation of sea-ice extent compared to the other assimilation systems. The other three gave similar results. The improvements due to assimilation were found to last for at least 3–4 months, but possibly even longer.


2018 ◽  
Author(s):  
Sindre Fritzner ◽  
Rune Graversen ◽  
Kai H. Christensen ◽  
Philip Rostosky ◽  
Keguang Wang

Abstract. The accuracy of the initial state is very important for the quality of a forecast, and data assimilation is crucial for obtaining a best possible initial state. For many years, sea-ice concentration was the only parameter used for assimilation into numerical sea-ice models. Sea-ice concentration can easily be observed by satellites, and satellite observations provide a full Arctic coverage. During the last decade, an increasing number of sea-ice related variables have become available, these include sea-ice thickness and snow depth, which are both important parameters in the numerical sea-ice models. In the present study, a coupled ocean-sea-ice model is used to asses the assimilation impact of sea-ice thickness and snow depth on the model. The model system with the assimilation of these parameters is verified by comparison with a system assimilating only ice concentration and a system having no assimilation. The observations assimilated are sea ice concentration from the Ocean and Sea Ice Satellite Application facility, thin sea ice thickness from the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity mission, thick sea ice thickness from ESA’s CryoSat satellite, and a new snow depth product derived from the National Space Agency’s Advanced Microwave Scanning Radiometers (AMSR-E/AMSR-2) satellites. The model results are verified by comparing assimilated observations and independent observations of ice concentration from AMSR-E/AMSR-2, and ice thickness and snow depth from the IceBridge campaign. It is found that the assimilation of ice thickness strongly improves ice concentration, ice thickness and snow depth, while the snow observations have a positive effect on snow thickness and ice concentration. In our study, the seasonal forecast showed that assimilating snow depth lead to a worse estimation of sea-ice extent compared to the other assimilation systems, the other three gave similar results. The improvements due to assimilation were found to last for at least 3–4 months, possibly even longer.


2016 ◽  
Vol 8 (5) ◽  
pp. 397 ◽  
Author(s):  
Yufang Ye ◽  
Mohammed Shokr ◽  
Georg Heygster ◽  
Gunnar Spreen

2021 ◽  
Author(s):  
Alek Petty ◽  
Nicole Keeney ◽  
Alex Cabaj ◽  
Paul Kushner ◽  
Nathan Kurtz ◽  
...  

<div> <div> <div> <div> <p>National Aeronautics and Space Administration's (NASA's) Ice, Cloud, and land Elevation Satellite‐ 2 (ICESat‐2) mission was launched in September 2018 and is now providing routine, very high‐resolution estimates of surface height/type (the ATL07 product) and freeboard (the ATL10 product) across the Arctic and Southern Oceans. In recent work we used snow depth and density estimates from the NASA Eulerian Snow on Sea Ice Model (NESOSIM) together with ATL10 freeboard data to estimate sea ice thickness across the entire Arctic Ocean. Here we provide an overview of updates made to both the underlying ATL10 freeboard product and the NESOSIM model, and the subsequent impacts on our estimates of sea ice thickness including updated comparisons to the original ICESat mission and ESA’s CryoSat-2. Finally we compare our Arctic ice thickness estimates from the 2018-2019 and 2019-2020 winters and discuss possible causes of these differences based on an analysis of atmospheric data (ERA5), ice drift (NSIDC) and ice type (OSI SAF).</p> </div> </div> </div> </div>


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James Hogg ◽  
Maria Fonoberova ◽  
Igor Mezić

Abstract Sea ice cover in the Arctic and Antarctic is an important indicator of changes in the climate, with important environmental, economic and security consequences. The complexity of the spatio-temporal dynamics of sea ice makes it difficult to assess the temporal nature of the changes—e.g. linear or exponential—and their precise geographical loci. In this study, Koopman Mode Decomposition (KMD) is applied to satellite data of sea ice concentration for the Northern and Southern hemispheres to gain insight into the temporal and spatial dynamics of the sea ice behavior and to predict future sea ice behavior. We observe spatial modes corresponding to the mean and annual variation of Arctic and Antarctic sea ice concentration and observe decreases in the mean sea ice concentration from early to later periods, as well as corresponding shifts in the locations that undergo significant annual variation in sea ice concentration. We discover exponentially decaying spatial modes in both hemispheres and discuss their precise spatial extent, and also perform predictions of future sea ice concentration. The Koopman operator-based, data-driven decomposition technique gives insight into spatial and temporal dynamics of sea ice concentration not apparent in traditional approaches.


2019 ◽  
Vol 13 (2) ◽  
pp. 521-543 ◽  
Author(s):  
Leandro Ponsoni ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Matthieu Chevallier ◽  
David Docquier

Abstract. The ocean–sea ice reanalyses are one of the main sources of Arctic sea ice thickness data both in terms of spatial and temporal resolution, since observations are still sparse in time and space. In this work, we first aim at comparing how the sea ice thickness from an ensemble of 14 reanalyses compares with different sources of observations, such as moored upward-looking sonars, submarines, airbornes, satellites, and ice boreholes. Second, based on the same reanalyses, we intend to characterize the timescales (persistence) and length scales of sea ice thickness anomalies. We investigate whether data assimilation of sea ice concentration by the reanalyses impacts the realism of sea ice thickness as well as its respective timescales and length scales. The results suggest that reanalyses with sea ice data assimilation do not necessarily perform better in terms of sea ice thickness compared with the reanalyses which do not assimilate sea ice concentration. However, data assimilation has a clear impact on the timescales and length scales: reanalyses built with sea ice data assimilation present shorter timescales and length scales. The mean timescales and length scales for reanalyses with data assimilation vary from 2.5 to 5.0 months and 337.0 to 732.5 km, respectively, while reanalyses with no data assimilation are characterized by values from 4.9 to 7.8 months and 846.7 to 935.7 km, respectively.


Sign in / Sign up

Export Citation Format

Share Document