scholarly journals Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

2011 ◽  
Vol 15 (3) ◽  
pp. 1081-1093 ◽  
Author(s):  
F. Suárez ◽  
J. E. Aravena ◽  
M. B. Hausner ◽  
A. E. Childress ◽  
S. W. Tyler

Abstract. In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

2011 ◽  
Vol 8 (1) ◽  
pp. 29-58
Author(s):  
F. Suárez ◽  
J. E. Aravena ◽  
M. B. Hausner ◽  
A. E. Childress ◽  
S. W. Tyler

Abstract. In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.


2010 ◽  
Vol 1 (4) ◽  
pp. 246-250 ◽  
Author(s):  
F. Suárez ◽  
A. E. Childress ◽  
S. W. Tyler

A salt-gradient solar pond is a low-cost, large-scale solar collector with integrated storage that can be used as a source of energy in low-grade-heat thermal desalination systems. This work presents the thermal evolution of an experimental solar pond for both the maturation and heat extraction time periods. The temperature profile was measured every 1.1 cm using a vertical high-resolution distributed temperature sensing (DTS) system, with a temperature resolution of 0.04ºC. Temperatures of 34 and 45ºC were achieved in the bottom of the pond when the lights were on for 12 and 24 hours per day, respectively. Heat was extracted at a rate of 139 W from the solar pond, which corresponded to an efficiency of 29%. Stratification and mixing were clearly observed inside the solar pond using the vertical high-resolution DTS system.


2016 ◽  
Vol 52 (7) ◽  
pp. 5179-5194 ◽  
Author(s):  
Martin A. Briggs ◽  
Sean F. Buckley ◽  
Amvrossios C. Bagtzoglou ◽  
Dale D. Werkema ◽  
John W. Lane

1995 ◽  
Vol 34 (16) ◽  
pp. 2955 ◽  
Author(s):  
M. Höbel ◽  
J. Ricka ◽  
M. Wüthrich ◽  
Th. Binkert

2016 ◽  
Vol 52 (10) ◽  
pp. 7690-7710 ◽  
Author(s):  
Jianzhi Dong ◽  
Susan C. Steele-Dunne ◽  
Tyson E. Ochsner ◽  
Christine E. Hatch ◽  
Chadi Sayde ◽  
...  

2020 ◽  
Vol 37 (11) ◽  
pp. 1987-1997 ◽  
Author(s):  
Gregory Sinnett ◽  
Kristen A. Davis ◽  
Andrew J. Lucas ◽  
Sarah N. Giddings ◽  
Emma Reid ◽  
...  

AbstractDistributed temperature sensing (DTS) uses Raman scatter from laser light pulsed through an optical fiber to observe temperature along a cable. Temperature resolution across broad scales (seconds to many months, and centimeters to kilometers) make DTS an attractive oceanographic tool. Although DTS is an established technology, oceanographic DTS observations are rare since significant deployment, calibration, and operational challenges exist in dynamic oceanographic environments. Here, results from an experiment designed to address likely oceanographic DTS configuration, calibration, and data processing challenges provide guidance for oceanographic DTS applications. Temperature error due to suboptimal calibration under difficult deployment conditions is quantified for several common scenarios. Alternative calibration, analysis, and deployment techniques that help mitigate this error and facilitate successful DTS application in dynamic ocean conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document