solar pond
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 109)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol 119 (1) ◽  
pp. 17-34
Author(s):  
Asaad H. Sayer ◽  
Mohsin E. Al-Dokheily ◽  
Hameed B. Mahood ◽  
Haider M. Khadem ◽  
Alasdair N. Campbell

2021 ◽  
Vol 43 ◽  
pp. 59-71
Author(s):  
Devendra B. Sadaphale ◽  
S.P. Shekhawat ◽  
Vijay R. Diware

Salt gradient solar ponds are to be designed for thermal efficiency and salinity profile stability. As the salt flux moves upward in the pond, the gradient gets destabilized. This is counteracted by intrusion of salt at different levels as and when required. The density of salt is highest at the bottom and minimum at the top. Hence the destabilization effect is more at top that is at the interface of upper convective zone and non-convective zone (NCZ). In order to keep the interface stable, it is desirable to provide a higher slope of salt gradient near it. However, throughout the non-convective zone, it is not feasible to provide higher slope due to solubility limitations. Hence Husain et al (2012) to divide the NCZ into two parts. The top few centimeters may be given a higher slope and the rest of the zone may be given mild slope as usual. Husain et al (2012) have given analysis for the same and found it to be feasible. However, the experimental feasibility of the same needs to be verified. The present work has done an attempt for the same. In this study, an insulated solar pond with a surface area of 1.40 m2and a depth of 1.14 m is built at the SSBT’s College of Engineering and Technology, Jalgaon in the Maharashtra State (India). The three salty water zones (upper convective, non-convective and heat storage) were formed by filling the pond with salty water of various densities. 6 Thermocouples (type Pt100A) (C+0.2%) were used to measure the temperature profile within the pond. A maximum temperature of 47°C was recorded in the heat storage zone in time span considered for study. The results obtained from experimentation is verified with the concept suggested by Hussain et al (2012) it has been found that they are in a good agreement. The influence of varying the thicknesses of the zones present in a salinity gradient solar pond on the temperatures of the upper convective zone (UCZ) and the lower convective zone (LCZ) is investigated. Also, it is found that by adding the additional non convective zone of 50 mm thickness above the UCZ the heat collection capacity of the LCZ is increased noticeably. The study finds that thickness variation of the zones within the pond is a practical feasibility. The system worked for the entire experimental duration effectively without failure.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012003
Author(s):  
S G Chakrabarty ◽  
U S Wankhede ◽  
R S Shelke

Abstract A solar pond technology employs a layer of salinity gradient to prevent heat loss due to convection from the lower convective zone. Thus, the energy received from solar radiation is stored in a lower convective zone. The thickness of various zones significantly affects the behaviour of solar pond temperature. In this present study, a transient numerical investigation is conducted to evaluate the impact of depths of different zones on the performance characteristics of solar pond. The variation in maximum temperature and maturation period under the influence of non-convective zone and lower convective zone thickness is discussed. The energy obtained from a solar pond significantly depends on various losses associated with the zones. Thus, an assessment of conduction and ground heat loss is presented for the variation in thickness of zones. An attempt is also made to study the effect of thickness of zones on the temperature of the lower convective zone. It is found that the configuration of a smaller thickness of LCZ and a higher thickness of NCZ yields maximum LCZ temperature.


2021 ◽  
pp. 13-22
Author(s):  
Annu Kumar Lakshya ◽  
Abhishek David ◽  
Mona Sahu ◽  
Rahul Kumar Sinha

2021 ◽  
Vol 47 ◽  
pp. 101478
Author(s):  
Seyed Masoud Parsa ◽  
Mahdi Majidniya ◽  
Wissam.H. Alawee ◽  
Hayder A. Dhahad ◽  
Hafiz Muhammad Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document