scholarly journals Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model

2012 ◽  
Vol 16 (3) ◽  
pp. 1017-1031 ◽  
Author(s):  
F. Zabel ◽  
W. Mauser ◽  
T. Marke ◽  
A. Pfeiffer ◽  
G. Zängl ◽  
...  

Abstract. Downstream models are often used in order to study regional impacts of climate and climate change on the land surface. For this purpose, they are usually driven offline (i.e., 1-way) with results from regional climate models (RCMs). However, the offline approach does not allow for feedbacks between these models. Thereby, the land surface of the downstream model is usually completely different to the land surface which is used within the RCM. Thus, this study aims at investigating the inconsistencies that arise when driving a downstream model offline instead of interactively coupled with the RCM, due to different feedbacks from the use of different land surface models (LSM). Therefore, two physically based LSMs which developed from different disciplinary backgrounds are compared in our study: while the NOAH-LSM was developed for the use within RCMs, PROMET was originally developed to answer hydrological questions on the local to regional scale. Thereby, the models use different physical formulations on different spatial scales and different parameterizations of the same land surface processes that lead to inconsistencies when driving PROMET offline with RCM output. Processes that contribute to these inconsistencies are, as described in this study, net radiation due to land use related albedo and emissivity differences, the redistribution of this net radiation over sensible and latent heat, for example, due to different assumptions about land use impermeability or soil hydraulic reasons caused by different plant and soil parameterizations. As a result, simulated evapotranspiration, e.g., shows considerable differences of max. 280 mm yr−1. For a full interactive coupling (i.e., 2-way) between PROMET and the atmospheric part of the RCM, PROMET returns the land surface energy fluxes to the RCM and, thus, provides the lower boundary conditions for the RCM subsequently. Accordingly, the RCM responses to the replacement of the LSM with overall increased annual mean near surface air temperature (+1 K) and less annual precipitation (−56 mm) with different spatial and temporal behaviour. Finally, feedbacks can set up positive and negative effects on simulated evapotranspiration, resulting in a decrease of evapotranspiration South of the Alps a moderate increase North of the Alps. The inconsistencies are quantified and account for up to 30% from July to Semptember when focused to an area around Milan, Italy.

2016 ◽  
Vol 10 (4) ◽  
pp. 1721-1737 ◽  
Author(s):  
Wenli Wang ◽  
Annette Rinke ◽  
John C. Moore ◽  
Duoying Ji ◽  
Xuefeng Cui ◽  
...  

Abstract. A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C−1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.


2013 ◽  
Vol 13 (7) ◽  
pp. 18581-18620 ◽  
Author(s):  
F. Lohou ◽  
L. Kergoat ◽  
F. Guichard ◽  
A. Boone ◽  
B. Cappelaere ◽  
...  

Abstract. This study analyses the response of the continental surface to a rain event, taking advantage of the long-term near-surface measurements over different vegetation covers at different latitudes, acquired during the African Monsoon Multidisciplinary Analysis (AMMA) experiment. The simulated surface response by nine land surface models involved in AMMA Land Model Intercomparison Project (ALMIP), is compared to the observations. The surface response, described via the evaporative fraction, evolves in two steps: the immediate surface response and the surface recovery. The immediate surface response corresponds to an increase in the evaporative fraction occurring immediately after the rain. For all the experimental sites, the immediate surface response is strongest when the surface is relatively dry. From the simulation point of view, this relationship is highly model and latitude dependent. The recovery period, characterized by a decrease of the evaporative fraction during several days after the rain, follows an exponential relationship whose rate is vegetation dependent: from 1 day over bare soil to 70 days over the forest. Land surface models correctly simulate the decrease of EF over vegetation covers whereas a slower and more variable EF decrease is simulated over bare soil.


2021 ◽  
Author(s):  
Priscilla A. Mooney ◽  
Diana Rechid ◽  
Edouard L. Davin ◽  
Eleni Katragkou ◽  
Natalie de Noblet-Ducoudré ◽  
...  

Abstract. Land cover in sub-polar and alpine regions of northern and eastern Europe have already begun changing due to natural and anthropogenic changes such as afforestation. This will impact the regional climate and hydrology upon which societies in these regions are highly reliant. This study aims to identify the impacts of afforestation/reforestation (hereafter afforestation) on snow and the snow-albedo effect, and highlight potential improvements for future model development. The study uses an ensemble of nine regional climate models for two different idealised experiments covering a 30-year period; one experiment replaces most land cover in Europe with forest while the other experiment replaces all forested areas with grass. The ensemble consists of nine regional climate models composed of different combinations of five regional atmospheric models and six land surface models. Results show that afforestation reduces the snow-albedo sensitivity index and enhances snow melt. While the direction of change is robustly modelled, there is still uncertainty in the magnitude of change. Greatest differences between models emerge in the snowmelt season. One regional climate model uses different land surface models which shows consistent changes between the three simulations during the accumulation period but differs in the snowmelt season. Together these results point to the need for further model development in representing both grass-snow and forest-snow interactions during the snowmelt season. Pathways to accomplishing this include 1) a more sophisticated representation of forest structure, 2) kilometer scale simulations, and 3) more observational studies on vegetation-snow interactions in Northern Europe.


2020 ◽  
Author(s):  
Ben Poulter ◽  
Leo Calle ◽  
Thomas Pugh ◽  
Nathan McDowell ◽  
Philippe Ciais ◽  
...  

<p>The drivers for terrestrial carbon uptake remain unclear despite a clear signal that the land removes the equivalent of up to 25-30% of fossil fuel CO2 emissions each year. Recent work has confirmed sustained carbon uptake by the land that is proportional to anthropogenic emissions, meaning that the land 'sink' has strengthened over the past five decades, and with interannual variability driven by climate. Drivers responsible for sustained uptake include hypotheses related to lengthening growing season length, increasing nitrogen deposition, changes in the ratio of diffuse to direct radiation, and land-use and land cover change. More recently, land-use and land-cover change has been investigated as a driver of land carbon uptake owing to an emergence of global-scale datasets related to canopy disturbance, land use, and forest age. At the same time, land-surface models have increased their realism in terms of moving beyond 'big-leaf' model representation of ecosystems to including vertical structure and horizontal heteorogeneity via size-and-age structured approaches. This presentation will address recent work identified forest structure and vegetation dynamics as a driver for global carbon uptake and provide examples of how remote sensing observations have led to new datasets for initialization land-surface models. Compared to inventory-based approaches, land-surface models initialized with forest age show a lessor role in explaining net terrestrial carbon uptake at global scales, but at regional scales, vegetation structure is a key determinant of carbon exchange. New satellite missions improving forest structure observations are expected to reduce uncertainties and contribute substantially to ongoing land-surface model development.</p>


2020 ◽  
Vol 13 (3) ◽  
pp. 1663-1683 ◽  
Author(s):  
Ignacio Hermoso de Mendoza ◽  
Hugo Beltrami ◽  
Andrew H. MacDougall ◽  
Jean-Claude Mareschal

Abstract. Earth system models (ESMs) use bottom boundaries for their land surface model (LSM) components which are shallower than the depth reached by surface temperature changes in the centennial timescale associated with recent climate change. Shallow bottom boundaries reflect energy to the surface, which along with the lack of geothermal heat flux in current land surface models, alter the surface energy balance and therefore affect some feedback processes between the ground surface and the atmosphere, such as permafrost and soil carbon stability. To evaluate these impacts, we modified the subsurface model in the Community Land Model version 4.5 (CLM4.5) by setting a non-zero crustal heat flux bottom boundary condition uniformly across the model and by increasing the depth of the lower boundary from 42.1 to 342.1 m. The modified and original land models were run during the period 1901–2005 under the historical forcing and between 2005 and 2300 under forcings for two future scenarios of moderate (Representative Concentration Pathway 4.5; RCP4.5) and high (RCP8.5) emissions. Increasing the thickness of the subsurface by 300 m increases the heat stored in the subsurface by 72 ZJ (1 ZJ = 1021 J) by the year 2300 for the RCP4.5 scenario and 201 ZJ for the RCP8.5 scenario (respective increases of 260 % and 217 % relative to the shallow model), reduces the loss of near-surface permafrost area in the Northern Hemisphere between 1901 and 2300 by 1.6 %–1.9 %, reduces the loss of intermediate-depth permafrost area (above 42.1 m depth) by a factor of 3–5.5 and reduces the loss of soil carbon by 1.6 %–3.6 %. Each increase of 20 mW m−2 of the crustal heat flux increases the temperature at 3.8 m (the soil–bedrock interface) by 0.04±0.01 K. This decreases near-surface permafrost area slightly (0.3 %–0.8 %) and produces local differences in initial stable size of the soil carbon pool across the permafrost region, which reduces the loss of soil carbon across the region by as much as 1.1 %–5.6 % for the two scenarios. Reducing subsurface thickness from 42.1 to 3.8 m, used by many LSMs, produces a larger effect than increasing it to 342.1 m, because 3.8 m is not enough to damp the annual signal and the subsurface closely follows the air temperature. We determine the optimal subsurface thickness to be 100 m for a 100-year simulation and 200 m for a simulation of 400 years. We recommend short-term simulations to use a subsurface of at least 40 m, to avoid the perturbation of seasonal temperature propagation.


2018 ◽  
Author(s):  
Ignacio Hermoso de Mendoza ◽  
Hugo Beltrami ◽  
Andrew H. MacDougall ◽  
Jean-Claude Mareschal

Abstract. Earth System Models (ESMs) use bottom boundaries for their land surface model components which are shallower than the depth reached by surface temperature changes in the centennial time scale associated with recent climate change. Shallow bottom boundaries reflect energy to the surface, which along with the lack of geothermal heat flux in current land surface models, alter the surface energy balance and therefore affect some feedback processes between the ground surface and the atmosphere, such as permafrost and soil carbon stability. To evaluate these impacts, we modified the subsurface model in the Community Land Model version 4.5 (CLM4.5) by setting a non-zero crustal heat flux bottom boundary condition and by increasing the depth of the lower boundary by 300 m. The modified and original land models were run during the period 1901–2005 under the historical forcing and between 2005–2300 under two future scenarios of moderate (RCP 4.5) and high (RCP 8.5) emissions. Increasing the thickness of the subsurface by 300 m increases the heat stored in the subsurface by 72 ZJ (1 ZJ = 1021 J) by year 2300 for the RCP 4.5 scenario and 201 ZJ for the RCP 8.5 scenario (respective increases of 260 % and 217 % relative to the shallow model), reduces the loss of near-surface permafrost between 1901 and 2300 by 1.6 %–1.9 %, and reduces the loss of soil carbon by 1.6 %–3.6 %. Each increase of 0.02 W m−2 of the crustal heat flux increases the temperature at the soil-bedrock frontier by 0.4 ± 0.01 K, which decreases near-surface permafrost area slightly (0.3–0.8 %), but reduces the loss of soil carbon by as much as 1.1 %–5.6 % for the two scenarios.


2015 ◽  
Vol 96 (3) ◽  
pp. 393-396 ◽  
Author(s):  
Randal Koster

Abstract At the land surface, higher soil moisture levels generally lead to both increased evaporation for a given amount of incoming radiation (increased “evaporation efficiency”) and increased runoff for a given amount of precipitation (increased “runoff efficiency”). Evaporation efficiency and runoff efficiency can thus be said to vary with each other, motivating the development of a unique hydroclimatic analysis framework. Using a simple water balance model fitted, in different experiments, with a wide variety of functional forms for evaporation and runoff efficiency, the author transforms net radiation and precipitation fields into fields of streamflow that can be directly evaluated against observations. The optimal combination of the functional forms—the combination that produces the most skillful streamflow simulations—provides an indication for how evaporation and runoff efficiencies vary with each other in nature, a relationship that can be said to define the overall character of land surface hydrological processes, at least to the first order. The inferred optimal relationship is represented herein as a curve in “efficiency space” and should be valuable for the evaluation and development of GCM-based land surface models, which by this measure are often found to be suboptimal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenzong Dong ◽  
Hua Yuan ◽  
Ruqing Zhang ◽  
Hongmei Li ◽  
Lina Huang ◽  
...  

Leaf optical properties (LOPs, i.e., leaf reflectance and transmittance), as a fundamental property of vegetation, are a key parameter in the canopy radiative transfer process. LOPs have a direct impact on the surface solar radiation partition and further affect surface flux exchanges. Recent works have provided reliable LOP data and mentioned that notable differences exist between the prescribed LOP values in current land surface models and measured LOP values, especially in the near-infrared (NIR) band. To evaluate the effects of different LOP values in land surface modeling, we ran two land surface models (the Community Land Model and the Common Land Model) with their default prescribed and measured values to examine the differences in simulated surface radiation partitions and fluxes. Our analyses show that differences in LOP values can lead to a large discrepancy in albedo, radiation partition, sensible heat flux and net radiation simulations. By using the measured LOP values, in the boreal forest zone, Southeast China, and the eastern United States, both models have a significantly increased surface albedo in the NIR band, with the difference exceeding 10% during JJA. Thus, the measured LOP values can improve the negative albedo bias in the boreal forest zone during summertime. Moreover, both models simulate less net radiation with a maximum reduction of 11 W/m2 when incorporating the measured LOP values. Therefore, the total sensible heat flux can be reduced by as much as 11 W/m2. The results of this study emphasize that different LOP values can have a considerable effect on the surface radiation budget and sensible heat flux simulations which need attention in land surface model development. However, in current offline simulations, the measured LOP values cause slight changes in land surface temperatures and gross primary productivity (GPP).


Sign in / Sign up

Export Citation Format

Share Document